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Abstract-For engineering problems. the elastoplastic constitutive model has been required. which
is applicable to the prediction of cyclic loading behavior for various stress/strain amplitudes. The
subloading surface model has been proposed and developed in order to respond to this requirement.
The original subloading surface model (or the bounding surface model with a radial mapping) does
not assume a yield surface enclosing an elastic domain in which stress rates of any direction do not
induce a plastic deformation. Instead. it assumes a normal-yield (or bounding) surface and a
subloading surface which always passes through a current stress point in not only loading but also
unloading states retaining a geometrical similarity to the normal-yield surface. Thus. it describes a
continuous stress rate-strain rate relation in a loading process. bringing about a smooth elastic­
plastic transition. and its loading criterion does not require the judgement whether a current stress
lies on a yield surface or not. It cannot. however. describe rC'.lsonably an induced anisotropy and a
hysteresis behavior for a stress change within the normal-yield surface. since the center ofsimilarity
of normal-yield and subloading surfaces is lilted or the translation rule is not formulated reasonably.
In this paper an ellact formulation of this model is presented by deriving a translation rule of the
center of similarity and a consistency condition for the subloading surface and by ellamining the
physical meaning of the loading criterion in terms of a strain rate and the associated flow rule
concurrently f{lr materials with an anisotropic h'lCdening/softening and without an elastic domain.
It is capable of describing an anisotropic hardening/softening. a smooth elastic-plastic transition
and a hysteresis behavior including Masing eITt:ct. a closed hysteresis loop and a mechanical
ratchetting elTcct consistently. This model is described for metals and is comp;lred with test data of
the torsional cyclic loalling behavior of stainles.~ steel.

I. INTRODtlCfION

A reasonable prediction of inelastic deformation of materials subjected to cyclic loadings
is of increasing importance for practical problems in engim..'ering. The convcntional
theory of plasticity is concerned only with a description of the remarkable plastic defor­
mation in the yield state. ignoring a plastic deformation due to a stress change within the
yield surface by assuming its interior to be an elastic domain. The "elastic domain" is
defincd as a domain in the stress space. in which stress rates of any direction do not induce
plastic deformation. i.e. in which only a purely elastic deformation can occur. Obviously.
the conventional theory is incapable of predicting cyclic loading behavior for small stress
or strain amplitudes. Its extension to the description of plastic deformation induced by the
stress change within the yield surface is the inevitable step for the development of plasticity.
To this aim. various elastoplastic constitutive models have been proposed since Mroz (1966)
proposed the "model ofa field of hardening moduli". In the meantime, the author proposed
the "subloading surface model" and refined it mathematically (Hashiguchi and Ueno. 1977;
Hashiguchi. 1978. 1979. 1980a. 1980b. 1985b). [n this extension the state in which a stress
lies on the conventional yield surface and the state within the surface are called a "normal­
yield state" and a "subyield state". respectively, and the conventional yield surface is called
a "normal-yield surface". while it was called a "distinct-yield surface" in the previous paper
(Hashiguchi. 1980a). Besides. the "bounding surfacc" in series of Dafalias' papers (e.g.
Dafalias and Popov. 1975; and Dafalias. 1986) is also regarded as the conventional yield
surface. since the bounding surfacc evolves by the isotropic and kinematic hardening rule
of the conventional yield surface. The surface in a stress space. on which a stress rate causes
a remarkable plastic deformation. has been called a yield surface as seen typically in the
perfectly plastic body as the simplest classical idealization. Hcre. one would have to be
deliberate in replacing the term "yield" surface used historically in the theory of plasticity
by the term "bounding" surface expressing a geometrical meaning rather than a physical
one.

The salient feature ofthe subloading surface model is the assumption of the "subloading
surface" which expands or contracts passing always through a current stress point in not
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only loading but also unloading states and retaining a geometrical similarity to the normal­
yield surface and is the description of a plastic modulus by the ratio of the size of the
subloading surface to that of the normal-yield surface. Thus. an elastic domain does not
exist and the plastic modulus changes continuously. Then. a continuous stress rate-strain
rate relation is described in a loading process. bringing about a smooth elastic~plastic

transition. and the loading criterion does not require the judgement whether a stress lies on
the yield surface or not since a stress lies always on the subloading surface.

Lata on. Dafalias and Herrmann (1980) presented a similar idea of "radial mapping"
in which a plastic modulus depends on the ratio of the magnitude of the current stress to
that of the conjugate stress on the normal-yield surface but the loading surface is not utilized
explicitly. while its mathematical structure is substantially the same as that of the original
subloading surface model. They call it a "bounding surface model" as well as the two
surface model (Dafalias and Popov. 1975. 1976. 1977). The two surface model assumes a
small yield surl:lce. called a "subyield surface" (Hashiguchi. 198 I. 1988). which encloses
an elastic domain and moves with a plastic deformation within the normal-yield surface.
keeping its size constant relatively to the size of the normal-yield surl;lce. Then. the two
surface model as well as the multi surface model (model of a field of hardening moduli)
(Mn)z. 1966. 1967; Iwan. 1967) is regarded as an extension of the kinematic hardening
model (Edelman and Drucker. 1951; Ishlinski. 1954; Prager. 1956) to the subyield state.
M I'll/ (1967) stated "we generali/e the rules of isotropic and kinematic hardening by
introdm:ing the concept of a lick! of hardening moduli". where he regarded the conventional
yield surface exactly as the outermost surface although he did not rename it in particular.
On the othcr hand. the subloading surface expands or contracts with a mo\ement of the
current stress point even when a plastic deformation docs not occur. Then. the subloading
surf,lce Illodel has a different structure from the two surface model although they an:
occasion:illy Gilled by the same term "bounding surface model" (Dafalias and Herrmann.
19XO; DaLiltas. I()X(,). The bounding surface is the yield surface in the cOl1\entional themy
as was desnihed hefnre. Since ulH.:onventional plasticity models arc keeping this surface.
one Glnl\lll specify nwdels by the term "hounding surface model". and it would not bc
reasonahk to call the two surface model and the radial mapping model by the same term.
since Ihey have dill"crenl structures from each olher. On the other ha nd. the Il'rm "subloading
surface mode'" would express concisely the physical ll:ature of this mOlkl which is an
extension of the conventional theory to the subyield state hy assuming the suhloading
surt:lCe within the nmmal-yield surface.

The suhlnading surface model or the radial mapping model has been applied widely to
the prediclion of irreversible deformation of soils if lashiguchi and Ueno. 1Y77 ; Hashigllchi.
1l)7~. 1979. I<JXOa; Dafalias and I-krrmann. IYXO, 19X2; Aboim and Wroth. 1982; Pande
and Pietrllszczak. IYX2; Dafalias. 19X4; Zienkiewicz and Mraz. IYX4; Naylor. IYX5; Pastor
c( al.. 19X5: Zienkiewicz c( al.• IYX5 ; Anandrajah and Dafalias. 19X6; Ban~rjee and Pan,
I<JX6; Bardet. 19X6; Herrmann (.( al.. 19X6; Pietruszczak. 19X6: Liang c( al.. 19X7;
Zienkiewio and Pastor, 19X7). concrete (Fardis £'( al.. 19X3; Chen and Bllyukolturk. 19X5:
Yang c( al.. IYX5) and metals (I-Iashigllchi. 1980a). In these papers. however. the center of
similarity of the normal-yield and the subloading surfaces is lixed in the origin of stress
space or on the central axis of the normal-yield surface. though it passed already a decade
aft~r the advocation or this model (Hashiguchi and Ueno. 1(77). Then. a str~ss strain curv~

with an open hysteresis loop is predicted for the partial unloading -reloading cycle of stress
as was critici/ed by Mrllz and Zienkiewicz (1984), and also the Masing effect (Masing.
1(26) cannot be described. It would be the reason why this model has hardly been applied
to metals which undergo an elastic deformation in a wide range of stress compared with
geomaterials. whereas its basic concept seems availahle to a wide class of elastoplastic
~laterials. Thus. the author (Hashiguehi, 1980b. 19X5b) has tried to extend it so that the
center of similarity translates with a plastic deformation. and Dafalias (19X I) has tried it
for the special case limited to the uniaxial loading behavior ofmctal.

In this paper. a mathematically exact formulation of the suhloading surface model is
brought to completion by deriving a translation rule of the center of similarity. avoiding a
singularity in the lIeld of plastic moduli. and a consistency condition for the suhloading
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surface and by examining the physical meaning of the loading criterion in terms of a strain
rate and the associated flow rule for materials with an anisotropic hardening/softening and
without an elastic domain. Its capability for prediction of hysteresis behavior including the
Masing effect. a closed hysteresis loop and a mechanical ratchetting effect. which are the
fundamental properties of cyclic loading behavior in the subyield state, is shown concisely
by the analyses of benchmark problems in uniaxial loading. Further, this model is applied
to metals by determining material functions explicitly and is compared with test data of
the torsional cyclic loading behavior of stainless steel. Finally. mathematically inevitable
shortcomings of the other well-known models, i.e. the multi. the infinite. the two and the
single surface models are discussed. comparing with the present model.

2. BASIC CONSTITUTIVE EQUATIONS FOR THE NORMAL·YIELD STATE

Constitutive equations for the normal-yield state in which a current stress lies on the
normal-yield surface are formulated below. which belong to the framework ofconventional
theory. and these will be extended to the subloading surface model in the subsequent
sections. While some of these equations were described in the previous paper (Hashiguchi,
19~5a). they are repeated here since they are necessary for the formulation and explanation
of the subloading surface model.

First. assume that the normal-yield surface is described by the following equation:

setting

f(a) - F(H) = 0

a .= a-rio

(I)

(2)

The second-order lensor (1 is a stress, and the scalar /I and the second-order tensor ri arc
internal stale variahles for descrihing the expansion/contraction and the translation. respec­
tively. of the surface. Let f- F < 0 hold in the interior of the yield surface. For simplicity,
one assumes that Ihe surf~lce descrihed by eqn (I) expands/contracts retaining a geometric.lI
similarity in a stn:ss space. Therefore, the function f is to be a homogeneous function which
satisfies the relations /(ax,) = a"f(x,) and ~, iJf/iJxi ' X, = nf for any real a and variables x,.
where n is the lkgree of homogeneity of the function /

LeI Ii. where a superposed dot designates a material-time derivative, be a function of
plastic strain rate £/1 (homogeneous of degree one by dimensional invariance of time) and
some plaslic internal state variables describing a history of plastic deformation.

Further. leI ~ be given as

: . a .
0[ = A--- - Bri

lIali
(3)

where A and Ii arc functions of £P in homogeneity of degree one and some plastic internal
stale variables. and the notation II II represents a norm (magnitude). (It can be set that
...i = 0 and Ij = - PI F. resulting in :i = - Fl. for geomaterials.)

By differentiating eqn (I) and substituting the relation

,y(a) nF
.. ~ ";.- = --;-;- Ii when f(a) = F

,'(1 tr (na)

Ii .= iJf(~) III iJf~~ II
cJa c!a

(4)

(5)

which results from eqn (I). noting the homogeneity of the function f. one has the consistency
condition
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Here. assume that the associated flow rule holds for the normal-yield state:

i P = J.ia (J. > 0),

(6)

(7)

where J. is a proportionality factor. ,
By substituting eqn (7) into eqn (6) f. is given as follows:

tr(M)
(8)). = --.-

D

where

6 == tr{ia(:~lia+a)} (9)

F' == dF/dH. (10)

Since Ii and xinvolve ,;" in homogeneity of degree one. one can write

. ;. ..
II = ).1"

1 ;. ..

:x = ).a.

(II)

( 12)

Ii and a arc scalar and second-order tensor functions of stress and some plastic internal
state variables. Ii is called a plastic (or hardening) modulus in conformity with the similarity
to the clastic modulus in a uniaxial loading state.

Let an clastic strain rate be given as

where E (fourth-order tensor) is the clastic modulus.
Substituting eqn (7) with eqn (8) and cqn (13) into the equation

,; = f." +i",

one obtains

. , I. tr (M) .
£ = E· (1+ .-c;- n

D

or inversely

( 13)

( 14)

(15)

( 16)

The constitutive equation (15) or (16) by itself falls within the framework of the
conventional theory of e1astoplasticity in which the interior of the normal-yield surface is
assumed to be an clastic domain. Therefore

(I) the discontinuous stress rate-strain rate relation is predicted. which changes
abruptly at the moment when the stress reaches the normal-yield surface;
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(2) the loading criterion requires the judgement whether the current stress lies on the
normal-yield surface or not:

(3) obviously, the hysteresis loop for the partial unloading-reloading, Masing effect
and the mechanical ratchetting phenomenon cannot be described. It is inapplicable to the
cyclic loading behavior in the subyield state.

3. FUNDAMENTAL ASSUMPTIONS AND THEIR PHYSICAL It'-'TERPRETATIONS

As was described at the end of Section 2, the elastoplastic constitutive model in
which the interior of the normal-yield surface is assumed to be an elastic domain has
fundamental limitations. In the following, let the models in this structure be called
"conventional (elastoplastic constitutive) models", and let the extended models (e.g. the
multi, the infinite, the two and the subloading surface models) to the subyield state be
called "unconventional models" in accordance with Drucker (1988). Prior to extending the
equations in Section 2 to the subloading surface model as an unconventional model. the
fundamental assumptions for new formulations and their physical interpretations are given
in this section.

3.1. Assumptions
The following assumptions arc incorporated into the subloading surface model which

will be formulated so as to overcome the aforementioned limitations in the conventional
model.

[I] The .mrjiln" mlled a "suhloadillg surface", exists, which exp(/tul"jClmtracts withill
tht' normal-yield .mrjilC<', passillg always through a cu"eflt stress poiflt not ollly in a loading
(dastoplastic) process hut also in (lfl unloading (dastic) process.

[II] The ,mh/oculing surface is .~imilar to the normal-yield surji.ln', afltl t!tes(' .Wlrji.lces lk
in positions ofsimilarity.pres('r!'in9 the same oriefltation without relmil'£' rotation.

By the assumption [II] a center ofsimilarity (or similarity-center) exists for the specilied
configumtion of the normal-yield and the subloading surfaces. Let the position vector of
similarity-center be denoted by S. Besides, in view of the assumption [I]. the similarity­
center must lie inside the normal-yidd surface.

The similarity-center of two figures is characterized by the fact that the straight lines
issuing from it intersect with the corresponding (or conjugate) points on these figures in a
constant ratio of distances from the center, provided these figures are not only similar but
also are located in positions of similarity. In the case of two surfaces whose geometrical
centers are specified, the above-mentioned straight lines intersect with these surfaces and
with their centers in a constant ratio of distances from the similarity-center. Needless to
say. the geometrical centres of these surfaces are different from each other and also are
different from the similarity-center in general.

[II'] The similarity-center does not lie on the normal-yield surface.

In the state that the similarity-center lies on the normal-yield surface, the subloading
and the normal-yield surfaces contact with each other in their different sizes. If the stress
coincides with similarity-center in this situation. the aforcmentioncd ratio of the distances
becomes indefinite so that a subloading surface is not determined uniquely. Thus, the
contact point, i.e. the similarity-center, becomes the singular point of a field of e1astic­
plastic moduli which causes a discontinuity of stress rate-strain rate relation, while the
subloading surface plays as a loading surface as will be described latcr as to the assumption
[IV]. This is physically inadmissiblc in gcncral, although it has been widely assumed fol­
lowing the first proposition of this model (Hashiguchi and Veno. 1977) for soils in such a
way that the similarity-center is fixed in the origin of stress space and the normal-yield
surface passes through it. Eventually, this assumption is required to guarantee that the
subloading surface is always uniquely detcrmined and thus a continuous stress rate-strain
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rate is always described for the non-zero strain rate, (The inditferentiability of a stress rate
with respect to a strain rate in the neighborhood of the null strain rate is the fundamental
property of the irreversible deformation although Truesdell (1955) excluded it in the hypo­
elastic equation.)

[III] The similarity-center mm'es (more excat~l". can more lIn~r) during a loading
(elastoplastic) process but does not moce during an unloading (elastic) process.

In view of this assumption the similarity-center can be regarded as a plastic internal
state variable as well as F and i in the conventional model. On the other hand. the geo­
metrical center of the subloading surface, denoted by i, is not a plastic internal variable as it
evolves even during an unloading (elastic) process in accordance with the assumption [I].
Whereas, i is determined from the geometrical relations of (1. F. :i and S since the sub­
loading surface is similar and is located in a position of similarity to the normal-yield surface.

Now, one introduces the ratio of the size of the subloading surface to that of the
normal-yield surface. Let it be called a "NS-surface size ratio" (abbreviated as "NSR")
and let it be denoted by R. Needless to say. NSR ranges from zero to unity. Hence.

[IV] NSR incrcascs and approaches unity when a plastic dcfimnation ocmrs. Inl'asel.'",
a plastic deformation occurs I!"hen NS R increases.

By this assumption NSR decreases or docs not change when a purely c1a~·;til: defor­
mation occurs, and inversely a purely clastic deformation only can occur when NSR
del:reases or does not change. Thus, the subloading surfal:e plays a role of loading surl~lCe.

This is a physil:al bal:kground of the term "subloading surfal:e'·. Besides. it is not required
to judge whether a stress lies on the loading surfal:e or not in a loading l:riterion sinl:e a
stress always lies on it by the assumption [I]. while the judgement whether a stress lies on
the yield surl:lce or not is required in conventional models.

[IV'] if plastic dejimnation qencrated in the null N.'>'R state is infinitesimal.

Now. note that the null NSR state (R = 0: (1 = i = S) is the minimum state of NSR
since R ~ O. Then. by the assumption [I V]. only a purely e1astil: deformation for 1< < () can
occur to readl the null NSR state, and after that an c1astoplastic deformation for 1< :> ()

occurs. Now, if a plastic deformation occurs finitely in the null NSR state. a stress rate
strain rate relation becomes discontinuous in this state by the abrupt occurrence of plastil:
deformation even if a stress path is smooth. In other words. the null NSR state becomes a
singular point of the field of elastic-plastic moduli. In order to avoid this physical and
mathematical shortcoming, the assumption [IV] is accompanied with the subsidiary assump­
tion [IV']. Thus, it results that the ratio of the rate of NSR, i.e. R, to that of the magnitude
of plastic strain rate is infinite in the null NSR state. Eventually. a purely elastil: deformation
occurs substantially in the null NSR state.

Besides, by the assumptions [IV] and [IV'], the state in whil:h a purely elastic deforma­
tion occurs for stress ratcs of any direction is realized in the null NSR state. In other words.
an e1astil: domain cxists merely as a point and only in the position of similarity-center.

[V] When NSR is unity, i.e. in the normal-yield state. a stress ratc-strain ratc relation
is gil'en hy the cOfl/'cntional equations descrihctl in Section 2.

This assumption leads to that the subloading surface model formulated tater is the
extension of the conventional model and thus it does not leap from it. Consequently. all
the equations described in Section 2 hold in the normal-yield state.

3.2, Physical interpretations of assumptions
In the initial subloading model (Hashiguchi and Ueno, 1977; Hashiguchi. 197X.

198041) or the bounding surface model with a radial mapping (Dafalias and Herrmann.
1980). the similarity-center is fixed in the origin of stress space or in a certain point within
the normal-yield surface. As the simplest case one considers the uniaxial loading behavior
of the idealized material with the nonhardening Miscs normal-yield surface and with an
initial isotropy as shown in Fig. I in which (J" and I;" arc axial components of (J" and gl'.
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respectively. By the initial subloading or the bounding surface model with a radial
mapping. all the shapes of initial loading. reverse loading and reloading curves are predicted
to be the same and only an elastic defonnation is predicted in an unloading process since
the subloading surface shrinks as a stress decreases. Therefore. the Masing effect is not
described and an open hysteresis loop is predicted. These shortcomings are caused by the
structure of this model in which the similarity-center is fixed.

On the other hand. let the similarity-center move with a plastic defonnation as shown
in Fig. 2 in which Sand i are axial components of the similarity-center S and the center of
the subloading surface. i.. respectively. By the premise of initial isotropy. the similarity­
center lies at the origin of stress space and the subloading surface is merely a point without
a size at the onset of initial loading as shown in Fig. 2(a) and it expands gradually as the
stress increases so that a plastic defonnation is generated and therefore the similarity-center
also moves up following a stress as shown in Fig. 2(b). On the other hand. in the unloading
state shown in Fig. 2(c). the subloading surface shrinks gradually and reduces to a point
when the stress decreases to the position of the similarity-center so that only an elastic
defonnation is generated and therefore the similarity-center does not move in this process.
But after the stress passed through the position of similarity-center the subloading surface
expands again from the point so that a plastic deformation is generated gradually. and
therefore the similarity-center moves as shown in Fig. 2(d). In other words. a plastic
deformation begins before a stress vanishes so that the Masing rule can be descrioed to
some extent. Further. in the reloading process shown in Fig. 2(e). the subloading surface
shrinks gradually and reduces to the point when a stress increases to the position of the
similarity center so that only an clastic deformation is generated and the similarity-center
docs not move in this process similarly to the initial stage of unloading mentiom:d aoove.
Suosequently. the subloading surface expands so that a plastic deformation proceeds and
the simiklrity-center moves up following the stress as shown in Fig. 2(0. A description of
dosed hysteresis loop is attained in this manner. whereas. the reloading after a small
unloading in a purely elastic deformation (i.e. the increase of rr prior to its decrease to 5; in
Fig. 2(c» causes an open hysteresis loop.

l'hysiml mi'lll/ill.ll of'simi/ari/y Ci'fI/a. The Bauschinger ellcct means that the yield
stress in the reverse loading becomes smaller than that in the initial loading. inducing a
plastic deformation. It gives rise to the induced anisotropy of plastic deformation oehavior
in the normal-yield state. This ellcet is described concisely by the kinematic hardening in
which the center ti of normal-yield surface moves with a plastic deformation. Here. ti is
regarded to be a geometrical center of clastic domain. On the other hand. the Masing rule
is characterized by the t~lct that a curvature of the reverse loading curve becomes smaller
than that of the initial loading curve. Further. a closed hysteresis loop during the unloading-­
reloading process is caused by a small plastic deformation in the unloading process prior
to a purely clastic deformation at the onset of reloading. These phenomena arc interpreted
to be caused by the fact that the stress state. in which materhtls deform most elastically. is
not tixed in its null state but moves following a current stress during a plastic deformation.
As was described as to the assumptions [IV] and [IV']. the similarity-center S expresses this

Fig. I. A schematic diagram of unia1tialloading behavior predicted by the initial subloading surface
model (bounding surface model wilh a radial mapping)_
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Fig. 2. A Sl:hernatic diagram of uniaxial loading behavior predicted by the subloading surface
modd: (a) a beginning state of an initial loading (<1 = S = i = O. R = 0); (b) an initial load­
ing procc:ss (Ii > O. S> O. R> 0); (c) an unloading process until <1 decreases to S (rY < O. S = o.
R < 0: dastic deformation); (d) an unloading reverse loading process after <1 passed through
S(1i < O. S < 0, R > 0); (el a reloading process until fT increases to S (rY > 0, S = o. R <
0: dastic deformation); (f) a reloading process after fT passed through S (rY > O.•~ > o. R > 0).

------ fT. --- -- S. i.

stress state, called "the most elastic stress", and its movement gives rise to the induced
anisotropy which affects a response for a small plastic deformation in the subyidd state.
Thus, while the center of normal-yield surface. Ii. can be called a "geometrical center of
elastic domain" (in the conventional sense) or a "normal-yield back stress" or a "normal­
yield kinematic hardening parameter", the similarity-center S can be called "the most elastic
stress" or a "subyield back stress" or a "subyield kinem,ttic hardcning paramctcr". Also.
F can be called a "size of e1,tstic domain" (in the conventional sense) or an "isotropic
hardening paramctcr".

The conventional isotropic/kinematic hardcning model involves only two internal
variables, i.e. F and Ii. On the other hand. the extended subloading surfacc model involves
three internal variables, i.e. F, Ii and S. Then, the formulation of the evolution cquation of
the similarity-ccntcr S is to be the main problem in the extension of the conventional modcl
to the unconventional one.

Physical meaning and role (~r NSR. It seems plausible to assume that the plastic
deformation occurs when a subloading surface expands. During a softening process.
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Fig. 2. (conlinu\.'d).

however. the normal-yield surface itselfshrinks and thus the subloading surface also shrinks
when they approach closely one to the other. Therefore. it cannot be assumed in general
that a plastic deformation does not occur when the subloading surface shrinks. This is the
physical background of the assumption [IVJ which is described by the NSR (not by the
expansion/contraction of the subloading surface itself). Besides. this assumption should be
incorporated into the formulation of constitutive equation. If not. it is not guaranteed that
a stress approaches the normal-yield surface even when a plastic deformation proceeds
infinitely. Its incorporation will be done in a formulation of the "extended consistency
condition" for this model in which a stress does not lie generally on the normal-yield
surface. while in all other models including the multi. the infinite. the two and the bounding
surface models. their plastic strain rate equations have been assumed a priori by using some
interpolation rule for plastic moduli between the elastic and the normal-yield states.

As was described as to the assumptions [IVJ and [IV']. this model involves an elastic
domain as a point. However. almost purely elastic behavior can be described in the subyield
state by selecting the high plastic modulus as a function of R. In other words. it can be
reduced to the conventional model.

4. FORMULATION OF SUBLOADING SURFACE MODEL

Based on the assumptions described in Section 3. let the subloading surface model be
formulated in this section.
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The subloading surface is described by the assumption [II] on similarity of the sub­
loading surface to the nonnal-yield surface as

in setting

f{q) = R"F ( 17)

(18)

where the function f(q) has the same fonn as the homogeneous function f(ti) in eqn (I).
R is described by current values of t1, i and F as

R =- {[(Fq )}!." (O~R~I). (19)

Also, by the assumption [II] on similarity, the following geometrical relations hold
(see Fig. 3)

where

ti = Rq,.

q = Rq•.

n = n•.

a==t1-S

S==S-i

S == S-i

Fig. 3. Configuralions of a. S. :i and Ii. (a) Normal-yield surface; (b) subloading surface.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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(29)

(30)

tI, denotes the conjugate stress on the normal-yield surface for the current stress tI on the
subloading surface. while the outward normals at these stresses on the surfaces have the
same direction.

[n the above. there appear the variables tI. F. ~. S. R. Ii. and tI•. There exist four
independent variables among them. Now. let the expressions of R and Ii by the basic
variables. i.e. the current stress tI and the plastic internal state variables F. i and S be
e;(plained below. which is required in calculation of stress rate-strain rate.

Substituting the relation

a = a+RS

which is obtained from eqn (21). into eqn (17). one has

f(a+ RS) = R"F

(31 )

(32)

from which one can determine R substituting the current stress tI and internal variables F.
ri and S. Further. substituting ri and S and the already determined R into the equation

Ii=S-RS (33)

which is obtained from eqn (31). Ii is determined.
Now. let the extended evolution equation of i to the subyield state be formulated. [n

accordance with the assumptions [II] and [V]. assume that the translation rule (3) of the
normal-yield surface holds even in the subyield state. regarding tI in eqn (3) as a conjugate
stress tI,.. Hence. noting the relation (22). eqn (3) becomes

, . a ".
IX = A II a II - Da.. (34)

Next. consider the evolution equation of the similarity-center. It must hold by the
assumptions [I). [II] and [II'] that

or

where

f(S) :s:; xnF

{
f(S)}""

R. == F (O:S:; R.:S:; I).

(35)

(36)

(37)

x(O :s:; X < I) is a material constant. The surface described by f(S) = R~F is depicted by
the dashed line in Fig. 3.

Equation (35) is rewritten as
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tr{DJ(S-~5)}~0 whenR,=X (38)

in a differential form, using the relation

c!(5) _ nx" F _
_ - _ Os when R, = 'I.

as tr (D,S)

where

(39)

(40)

Equations (35) or (36) and (38) will be called an "enclosing condition of similarity­
center".

In order to satisfy eqn (38), referring to Fig. 3. assume that

~ t-
S- -F-S = ClIllf'll(O',,-S.r) when R, = 'I.n . (41 )

where Sv designates the intersecting point of the normal-yield surface and the straight line
issuing from the point ~ and passing through the point S in the stress space. i.e.

S
Sv = ~+ R .,

(42)

C( ~O) is a material constant which controls the rate of translation of the similarity-center.
On the other hand. for Rs = O. i.e. S = ~. one assumes that

~ t-
S- of'S = Cllef'lI(O'•. -~) when R, = O.

(n Fig. 3. DSY is the outward normal of the normal-yield surface at the point Sf' i.e.

setting

5y == Sr-~'

(43)

(44)

(45)

For eqns (41) and (43) to be satisfied, one assumes the following linear equation of R,
as the simplest one

s- t s = CIIF."II {O'r-i+ ~S(i_S,.)}
nF . X

which is rewritten as

~ t. (ti S)S- -5 = CiIi"I1 -- -- .
nF R X

noting eqns (22) and (42).

(46)

(47)
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Eventually. the translation rule ofS is given from eqn (47) as follows:

~ : F - (a S)
~ = :( + - S +C IW II - - -

oF R 1

which reduces to

C
S = Ii. IWlla = CIWlla. when F= O. ~ = 0, X = 1.

929

(48)

(49)

The evolution equation of Ii given by eqn (3) conforms to Ziegler's (1959) modification
of Prager's (1956) kinematic hardening rule due to a mathematical convenience that the
components of ri in the directions of null stress condition vanish throughout a deformation
for initially isotropic materials. However. it does not differ from Prager's rule in the case
of metals with von Mises yield surface. Equation (34) is the extension of eqn (3) to the
subyield state. Further. the evolution equation of the similarity-center given by eqn (48)
also involves this mathematical convenience eventually. Then, all the components of ri, S
and i [see eqn (33)] in the directions of null stress condition vanish consistently throughout
a deformation, while a more due consideration is required to clarify whether it has a
physically inevitable reason too.

Next. one formulates a consistency condition for this model in which a current stress
does not lie on the normal-yield surface in general.

DilTerentiating eqn (32) and noting the relation

one has

a/(a) nR"F _
~._= ---0

(fa tr (ua) ,

{ (
. ~ j: R)}

tr ii a+ RS- nFa- Ra = o.

(50)

(51 )

In order to obtain from eqn (51) a consistency condition by which a plastic strain rate
will be formulated, let an evolution equation of R, Le. R, be assumed. In accordance with
the assumptions [IV] and [IV'], one introduces the equation

R= U IW II for liP :;/; 0 (52)

where U is a monotonically decreasing function with respect to R satisfying the conditions

U = + 00 for R = 0

U = 0 for R = 1. (53)

The Masing rule and a closed hysteresis loop arc described to some extent by the
movement of the most elastic stress S. However. note that if U is a function of R alone.
eqn (52) results in R - R o = /(f.P - i~) for R = Ro : iP = i~ where i P is the accumulated
plastic strain. i.e. i P = f IW II dl (I, time). Therefore. the accumulated plastic strain i P

generated until R reaches a certain value from a certain state (Ro• i~) in a loading (elasto­
plastic) process is the same independent ofan initial loading. reverse loadings and reloadings
after unloadings of various magnitudes. This would not be realistic as known from the fact,
for example. that the plastic strain generated during the reloading process after a small
unloading is to be far smaller than that during the initial loading process. Then. assume
that the function U depends not only on R but also on a distance from the current stress tS

to the conjugate stress tS.>. As a measure of this distance. one introduces the non-dimensional
parameter
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which is rewritten by eqn (20) as

where

K. HASHIGUCHI

-_{f(ti)}"
R= ­

F

(54)

(55)

(56)

Thus. the function U is given as

U = U(R. Ry ) or U = U(R. ih (57)

Obviously U must be a monotonically decreasing function with respect to R,. or R too.
Examples of the function U are

(51')

(59)

where /I,. /I ~ and m arc material constants.
Substituting cqns (4X) and (52) into eqn (51). one obtains the consistency condition

for this cxtended model :

[ -( , t. { (ti S) U -} . )Jtr n (1-oF(1- C(I-R) i?-x +R(1 lIeP l1 =0.

Here. assume that the associated flow rule holds also for the subloading surface:

rf = in.

By substituting eqn (61) into (60). the proportionality factor i is given as

;. tr(na)
A---. - jj •

where

- [ {F' (ti S) U}]D == tr n nFliti+a+C(I-R) R- X + Rti .

Since ff and ~ involve rf in homogeneity of degree one, one can write them as

ff = Xli.

: ...­
IX = ".a.

(60)

(61 )

(62)

(63)

(64)

(65)

Ii and ii are scalar and second-order tensor functions of stress and some plastic internal



Subloading surface model in unconventional plasticity 931

variables. The loading criterion and the physical interpretation of the associated flow rule
for this extended model are given in the next section.

It should be noted that eqns (61)-(63) lead to i5 -+ 00 W-+ 0) for R < I and Jj = 15
for R = I by selecting U ..... 00 for R < I [UI ..... 00 or Uz ..... 00 in eqn (58) or (59)]. In other
words. this model reduces to the classical constitutive equation by the selection of material
parameters, the interior of the normal-yield surface becoming an elastic domain sub­
stantially.

For the special case of S = Ii = i. the function i5 of eqn (63) reduces to

Further, for S = ri. = i = 0 with ii =0 and C = 0, the function i5 reduces to

(
F' U)Jj = nF Ii+ R tr (iiO').

(66)

(67)

In the above. the plastic modulus {) was derived logically by formulating the consistency
condition on the premise i< > 0 for i P #- O. while the plastic modulus has been assumed a
priori in the past formulations by interpolation rules (Hashiguchi and Veno, 1977; Hashi­
guchi. 1978. 1979. I980a: Dafalias and Herrmann. 1980; Dafalias. 1986; Zienkiewicz and
Mraz. 1984. etc. for S = Ii = i = 0 and Hashiguchi, 1980b. 1985b for S #- 0).

Combining clastic and plastic strain rate equations (13) and (61) with eqn (62). one
obtains

or inversely

I. tr(iin)_
e=E 0'+-.;;-0

D

. {. tr(iiEIi)_}
0' =E Il- _ 0 .

D+tr(iiEii)

(68)

(69)

S. A LOADING CRITERION AND THE ASSOCIATED FLOW RULE

A loading criterion formulated in terms of a strain rate instead of a stress rate with
the outward normal of plastic potential surface and the elastic modulus was induced by
Hilt (1958), premising on a hardening process. This criterion seems applicable to generalized
elastoplastic materials with hardening/softening behavior. Later on, Hilt (1967) formulated
it on the postulate that a strain rate space is divided by a hyperplane into the two domains
which cause a loading and an unloading. respectively. Besides. Mraz and Zienkiewicz (1984)
formulated it on the postulate that a strain space is divided by a yield surface into the two
domains which cause a loading and an unloading, respectively. It does not belong to the
ordinary stress space formulation but falls within the so-called strain space formulation in
which the constitutive relation of a stress rate and a strain rate is formulated by a strain
(not a stress) and plastic internal variables. Both of them are not straightforward for­
mulations from the postulate on the ordinary loading surface in the stress space. Whereas,
the strain space formulation premises at present that the interior ofyield surface is an elastic
domain and that the yield surface includes a null stress state, because of the decomposi­
tion of strain into elastic and plastic components. Thus, the existing strain space formula­
tion is regarded as the untraditional representation or interpretation of the classical
e1astoplasticity.
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The physical interpretations of the associated flow rule were given by Drucker (1951)
and by Ilyushin (1961). The former belongs to the stress space formulation but premises
the existence of the yield surface enclosing an elastic domain and the latter belongs sub­
stantially to the strain space formulation.

The present model does not premise the existence of an elastic domain and also does
not use a strain belonging to the stress space formulation. In this section. a physical
interpretation of the above-mentioned loading criterion by Hill is given from the postulate
on the loading surface in a stress space within the framework of the stress space formulation
for the generalized materials without an elastic domain but with hardening/softening
behavior. while the formulation of this loading criterion was discussed briefly by the author
(Hashiguchi. 1988) on the premise of the associated flow rule. Further. the associated flow
rule is derived from this loading criterion and from Ilyushin's hypothesis of a non-negative
work done during a strain cycle. In this section let a loading and an unloading mean the
processes during which a plastic deformation occurs and does not occur, respectively.

Now. one introduces a loading surface:

1«(1. H,) = 0 (i = I. 2..... n) (70)

where scalar or tensors Hi denote collectively plastic internal variables, and 1< 0 for the
interior of the loading surface.

Ditferentiation of eqn (70) leads to the consistency condition

(
VI".) n DI .

tr:) (1 + L H, = O.
((1 ,_ I t7 Hi

Here. let it be assumed that a plastic strain rate i P is expresscd as

i" = 1.m (1. > O. IImll = I)

(71 )

(72)

whcre 1. is a proportionality factor dctcrmined below, and mis a normalized seeond-ordcr
tcnsor which is a function of stress and some plastic intcrnal variables.

ti, can be cxprcsscd by eqn (72) as

ti, = jh,

whcre scalars or tcnsors h, are functions of stress and some plastic internal variables.
Substituting eqn (73) into eqn (71). we have

(73)

or

tr(:~a)
j = --~.

" of- L -;'I-h,
i_1oH,

(>0 for liP #- 0) (74)

where

. tr (na)
A. = -:n- (>0 for liP #- 0). (75)
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1) == - ±~CHlfhi/ll ~II,
i_Iv I C6 1

ef II\efll
n == c6/1 col

Substitutions of eqns (13), (14) and (72) into eqn (75) lead to

" tr {nE(s-J.m)}
A. = -'--------

3:'

933

(76)

(77)

(78)

from which one obtains the expression for J. by the strain rate instead of a stress rate. Let
it be denoted as A:

A
__ tr(nEi)

(>0 forsl';i:O)
3:'+tr(nEm)

by which eqn (72) is rewritten as

t/ = Am.

(79)

(80)

Now, one derives a loading criterion for the constitutive equation which satisfies the
following assumptions.

[VI) A plastic dt'jormat;on occurs at least when a stress rate has an outward direction
of a loading surface.

[VII) A strain rate of any direction can occur in any state, while a stress rate cannot
occur in arbitrary din'ction in get/aal (suppose a palectly plastic and a softening processes).

The assumption [VI] is described as

t/ "# 0 when tr(na) > 0

which means that the inequality tr (na) > 0 is a sufficient condition for a loading.
Thus, it must hold that

tr(na) ~ 0 when i/ =0

(81 )

(82)

which means that the inequality tr (na) ~ 0 is a necessary condition for an unloading. This
condition is not. however. a sufficient condition for this state. (It holds also in the loading
with a softening.) Since it holds that a = Ei in an unloading (s = i e

). the necessary condition
(82) for an unloading is rewritten as

tr (nEi) ~ 0 when il' = 0 (83)

by a strain rate instead ofa stress rate. As known from the relation tr [nE( -i)] = - tr (nEi),
the strain rate space is divided into half spaces by the sign of tr (nEi).

Now. it can be stated from eqn (79) that

(i) if 1) + tr (nEm) < 0, a loading cannot occur for tr (nEi) > 0 ;
(ii) if 1) + tr (nEm) = 0, a loading cannot occur except for the special process tr (nEi) = 0,

while an unloading also cannot occur in the deformation process tr (nEi) > 0 by the
necessary condition (83). The admissible strain rate and stress rate with the signs of 1) and
tr(nEm) under the condition A > 0 were examined by Mair and Hueckel (1979) in detail.

SAS 2S:8-C
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Accordingly. a deformation bringing about tr (nEi) > 0 cannot occur at all in both a
loading and an unloading if ~ + tr (nEm) ~ O. This contradicts the assumption [VII].
Thus. it must hold that

~+tr(nEm) > 0 (84)

in order to satisfy the assumptions [VI] and [VII], and by taking account of eqn (84) into
the subsidiary condition A > O. it must hold that

tr (nEi) > 0 when il' i= 0 (85)

which means that the inequality tr (nEi) > 0 is a necessary condition for a loading.
The necessary conditions (83) and (85) for an unloading and a loading. respectively.

exhibit different ranges of the quantity tr (nEi) from each other. while only either of these
processes can be taken. Then. it results that they are not only necessary but also sufficient
conditions for each process. Eventually. a loading criterion is given as

il' i= 0: tr(nEi) > O.

il' = 0: tr (nEIi) ~ 0 (86)

which was shown by Hill (1958). presupposing ~ > O.
Whereas. ;: in eqn (75) is not applicable to hardening/softening materials. since ;: > 0

holds not only in a loading but also in an unloading for the state ~ < 0 [for which a
softening tr (na) < 0 proceeds if a loading takes place).

Ilyushin (1961) postulated that the work done during a strain cycle is non-negative.
I.e.

~tr(l1dr.) ~ o.

For an infinitesimal strain cycle. eqn (H7) is written as

tr (dl1l' dr.) ~ 0 or tr (aPi) ~ 0 when i P i= 0

where til' is a plastic relaxation stress rate. i.e.

Fig. 4. A non-negative work done during a strain cycle.

(S7)

(88)
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(89)

referring to Fig. 4 in which the elastic lines ab and cd are regarded as parallel since one
considers the infinitesimal strain cycle.

Substituting eqn (80) into eqn (88). one has

tr (mEi) ~ 0 when i P =1: O. (90)

while the strain rate satisfying this inequality occupies a half of strain rate space. In order
that eqn (90) is fulfilled for an arbitrary strain rate in the loading process. i.e. eqn (86)" it
must hold that

m=n.

Equations (72) or (80) with eqn (91) is the associated flow rule.

(91)

6. QUANTITATIVE DESCRIPTIONS OF BENCHMARK PROBLEMS IN UNIAXIAL LOADING

Let the basic characteristics of the present model be examined by the quantitative
descriptions of some benchmark problems in uniax:ialloading. In order to do it concisely.
one adopts the nonhardening von Mises normal-yield surface. Thus. for a uniaxial loading
the normal-yield state is described by

1111 = F

with

t =O. ti = O. n = I

and eqn (32) is written as

1<f+RSI = RF

from which R is given as

<f
R=--­

<f
1<fI

F
-

S

where ais the axial component of a. And ~ is given from eqns (33) and (95) as

<f
-F-11

~=S(I-R)=S_I~_I-
11

lal F
- S

Let the function U be given as

U =u(l- R'")!R".

(92)

(93)

(94)

(95)

(96)

(97)

where II. m and" are material constants.
If one adopts a value close to unity for the material constant X. the evolution equation

of the similarity-center is given from eqn (49) by
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s
F

-F

Fig. 5. Relation of 5 versus I;' (X = I) in uniaxial loading.

s= eJ~(F+5W (X:::: I).

Integration of eqn (98) leads to

(98)

5-50

F+50

±[I-exp {e j1(EI'-r.f,)}] (99)

for the initial condition 5 = 50: r.1' = r.f,. In these equations the upper and lower cases stand
for if > 0 and 1'.1' < O. respectively. S - r.1' curves described by eqn (99) have a unique shape
as shown in Fig. 5. while the curves for tension and compression are asymmetric to each
other.

The axial plastic strain rate is given from eqns (61)-(63) as

(100)

Although the equations for the uniaxial loading arc given above in order to exhibit
the features of the present model concisely. the calculations were performed by the six­
dimensional numerical program based on the exact equations in Section 4 and eqn (97).
The calculated results arc shown in Fig. 6 in which material constants arc selected as

F= 100 MPa. II = 5. III = 5. '1 = 7. C = 700. X = 0.99

which causes a large plastic deformation compared with usual metals. in order to exhibit a
hysteresis and ratchetting behavior clearly.

The initial loading and the unloading-reloading curves are shown in Fig. 6(a) in which
a closed loop is observed.

(0)

100

cr. s. a.
(MPel --.---

o
£P(%I

02

Fig.6(a).

Fig. 6. Uniallialloading behavior calculatcd by the subloading surface model: (a) the initial loading.
the unloading and the reloading curves; (b) the hysteresis loop for 1111 ~ 99.5 MPa; (c) the cyclic
loading curve for a large stress amplitude (tT = 0 -90 MPa); (d) the cyclic loading curve for a small

stress amplitude (tT = 50 -90 MPa). --!T. ----5. ----- i.
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The hysteresis loop for the range of stress ±99.5 MPa is shown in Fig. 6(b) in which
the Masing rule is expressed to some extent. The Masing rule is described as (Mr6z. 1966):
When one represents the initial loading curve as a = /(£). the reverse loading curve is
described as (ao-a) 2 = /«£0-£)/2) where a o and £0 are values of a and axial strain £ at
the onset of reverse loading. On the other hand, the reverse loading curve in real materials
is described as (ao-a)L = (((r.o-r.)iL) where L(1 < L < 2) can be called a "rounding
coefficient". and this phenomenon can be called a "Masing effect" referring to the
Baushinger effect. For L = I the shapes of an initial and a reverse loading curves coincide
with each other. On the contrary, for L = 2 the stress and the strain generated in a reverse
loading process are twice those in an initial loading process, i.e. the Masing rule itself.
It is observed in Fig. 6(b) that L ~ 1.5. while L is controllable in the range I ~ L < 2 by
the selection of the material parameter c: L = I for C = O. i.e. the initial subloading surface
model. and L approaches 2 for C » C: for which the (J - r. P curve approaches the S - i: P

curve shown in Fig. 5.
The cyclic loading behavior for the large stress amplitude 0-90 MPa and the small

stress amplitude 50-90 MPa (50 cycles) is shown in Fig. 6(c and d) in which mechanical
ratchetting and its shake-down phenomena are observed. while for a small stress amplitude
open loops are repeated until S reaches the range of a. The shake-down is not attained
completely and finally the cycle proceeds in a constant interval of plastic strain which is
smaller for a smaller stress amplitude. A modification is required to attain a stronger shake­
down by making the function U in the evolution equation of R be a function of an
accumulatcd plastic strain /7 in addition to Rand R. so that a deformation becomes purely
clastic gradually with the increase of fP.

As shown above by some basic examinations though thcy arc the simple cascs, it would
be conceivable that the subloading surface model has a basic structure applicable to the
prediction of cyclic loading behavior in not only normal-yield but also subyield statcs.

7. CONSTITUTIVE EQUATIONS OF METALS AND THEIR COMPARISONS WITH AN
EXPERIMENT IN SIMPLE TORSIONAL CYCLIC LOADING

The basic formulation of the subloading surface model was given in the preceding
sections. Based on it, let the explicit constitutive equations of metals be formulated below
in the form applicable to the analysis of cyclic loading behavior.

Let the normal-yield surface be given as

/(ti) = J3/211ti'll

1"(11) = Fo(l +11 1 : I-exp (-I1~II)}]

~ = IW II (k 1 iI~~ - k~ri)

Ii = J2!3R'llliP II

where Fo is an initial value of F, and hi, h1, k" k 1 and v arc material constants. and

Ii' == Ii- !trtil.

(10 I)

( 1(2)

(103 )

(104)

( 105)

(106 )

Rwill be explained later.
The nonlinear kinematic hardening rule proposed by Armstrong and Frederickson

(1966) and refined by Marquis (1979; see also Benallna and Marquis, 1987) is
d = k I IiP -k 1 IWllri. Equation (103) is regarded as a modification obeying Ziegler's
(1959) proposal for mathematical convenience which was described in Section 4; whereas,

egn (103) is integrated as

----------

k 1_.

k~ +:X o

for the initial condition a. = in: r. P = r.fJ in uniaxial loading. where the upper and the lower
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cases stand for tension and compression, respectively. Here, it is worthwhile to notice that
all the equations (99), (102) and (106) of the internal variables S, F and Ii reduce to the
same exponential form of plastic strain in the uniaxial loading. Besides, eqn (99) and (106)
describe concisely the gradual saturations of translations of S and Ii during a monotonic
loading and the abrupt recovery of translations at the onset of stress reversal, which are
typical properties of irreversible deformation.

The hardening of metals is interpreted to be caused by the accumulated plastic strain.
For a certain accumulated plastic strain, the expansion of the yield surface, i.e. the so-called
isotropic hardening during a cyclic loading is far more weakened than that during a
monotonic loading and it saturates for a rather small accumulated plastic strain. In order
to describe a cyclic loading behavior of metals, Chaboche et al. (1979) proposed the concept
of (isotropically) nonhardening domain which means that the isotropic hardening does not
occur when a plastic strain lies inside a certain surface in a plastic strain space. Let this
surface be called a "hardening surface". It is similar to the conventional yield surface in a
stress space. for which it is assumed that a plastic deformation occurs only when a stress
lies on the surface. Based on this idea. they described the hardening surface by the equation

(107)

where

Let the rate of translation and expansion of the hardening surface be given as

Ii = (l-h)RCtr(iiiP)ii

where hand' are material constants and

R=J2i3IWII/K.

(108)

(109)

( 110)

(111)

(112)

Equations (109) and (110) satisfy eqn (107) when A. = 1. Equations (107)-( III) for k· = r
were proposed by Chaboche et al. (1979) as h = 1/2 and modified by Ohno (1982) as
h # 1/2. where r is defined as

r = I when J2/31JiP II - K= 0 and tr (niP) > 0

r = 0 when J2!3IWII-K < 0 or tr(iiiP ) ~ O.

However, this hardening criterion falls within the framework of conventional plasticity.
postulating that the interior of the hardening surface is a purely nonhardening domain.
Thus. it would not be applicable to the cyclic loading behavior for plastic strain amplitudes
which change within the hardening surface. Further, a discontinuous stress rate-strain rate
relation is described with an abrupt occurrence of hardening when a plastic strain reaches
this surface. 1n order to extend the concept of nonhardening domain to the unconventional
plasticity framework. the new variable R is here incorporated into eqn (104) so that a
hardening occurs depending on the value of R even when a plastic strain lies inside the
hardening surface. and thus the continuous hardening rate is described always. Besides. the
judgement whether the current plastic strain lies on the hardening surface or not is not
required. By this extension or its refinement. a cyclic loading behavior of metals will be
predicted properly for various stress or strain amplitudes.
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S, Rand i P are given by eqns (48), (52) with eqn (58) and (61 )-(63) themselves.
The subloading surface for the normal-yield surface (10 I) is expressed in the form of

eqn (32) as

J3(2l1a'+RS'1i = RF

where

a' == a- ~ tr at S' == S-1 tr 51.

Solving eqn (113) for R, one obtains the analytical solution

where

(113)

( 114)

( 115)

( 116)

Equation (115) is the expression of R by the current stress (1 and internal variables F, ~ and
S. Further, substituting eqn (115) into eqn (33), one has the expression for i by them.

Let an elastic constitutive equation be given by Hooke's law:

( 117)

where E and G arc Young's modulus and a shcar modulus, rcspcctively.
Figurc 7 shows a relationship bctwecn fir and y"1fi in a simple torsional cyclic

loading mcasurcd by Tanaka e/ al. (1985), whcrc rand y" are the shcar stress and twice the
plastic shear st~ilin. rcspectively (the equivalent stress j3/211 (1' II and the equivalent plastic
strain rate j2/31WII reduce to j31rl and Wllj3 for a simple torsion and to l/1j and liPj
for a uniaxial loading, respectively, where (1' and i P' are a deviatoric stress and a deviatoric
plastic strain rate). The thin-walled tubular specimen (21 ~g02 mOl diameter, 1~::02 mOl
thickness and 60 mOl length) of type 316 stainless steel was subjected to cyclic loadings

of plastic strain amplitudes ofy"/j) = ± 0.1. ± 0.2 and ±0.4%. The cyclic loading in each
stage-in each specified value of amplitude-was continued until the stabilized behavior
was almost attained; the corresponding equivalent plastic strain fld'/\/J3 was more than
30%.

The theoretical curves calculated by the present model are depicted in Fig. 8(a) where
material constants and initial values are selected as follows:

hi = 1.5, 11 2 = 25, k , = 15,000 MPa. k 2 = 200

C = 700, X::: 0.9, III = 6,000, m = 0.1

v = 5, (= 5. h = 0.1

E = 199,000 MPa, G = 77,000 MPa

Fo = 250 M Pa, Ko = 0, ::io = So '= i o = 0

where Ko• 1%0. So and i o are initial values of K. 1%, Sand i. respectively. Variations of

.)3ci" .)3(ci,+FyPIWI) (normal-yield state) and j3S, are depicted in Fig. 8(b), whcre a,
and S, are shear componcnts of 1% and S. The smooth elastic-plastic transition, Masing
effect and the saturation of hardening are shown in Fig. 8.

A good agreement betwecn experiment and theory is observed in Figs 7 and 8(a).

8. DISCUSSIONS

The multi surface model proposed by Mroz (1966. 1967) and [wan (1967) as an
extension of the kinematic hardening model to the subyield state and the two surface model
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Fig. 7. Measured relationship of J3 r versus y'/J3 for simple torsional cyclic loadings of various
plastic strain amplitudes (Tanaka et ai.. 1985).

proposed by Dafalias and Popov (1975) and Krieg (1975) as a simplification of the multi
surface model are well known and have been widely used as well as the initial subloading
surface model or the bounding surface model with a radial mapping.

The unconventional models as the extention of the kinematic hardening model to the
subyield state, i.e. the multi and the two surface models premise on the contact of loading
surfaces. which is avoided exactly in the present models by the assumption [II']. It leads to
the singularity of the field of hardening moduli in the contact point which is a similarity­
center of the surfaces. Thus. a discontinuous stress rate-strain rate relation is described
when a stress passes through the contact point after it left once from this point (in a
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Fig. 8. Calculated relationship for simple torsional cyclic loadings of various plastic strain
amplitudes: (a) .j3r versus y'/.j3; (b) J3a., (---). .j3(ri

T
+Fj"J!Y'1) (-) and JjS.
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reloading after a partial unloading). Accordingly. these models are incapable of describing
a smooth stress-strain curve in general. Further. the two surface model assumes the subyield
surface enclosing an elastic domain. Then. even if there does not exist a contact of surfaces.
a discontinuity of stress rate-strain rate relation occurs when a stress reaches the subyield
surface.

Further. consider the uniaxial loading behavior of the material with the nonhardening
von Mises normal-yield surface. The multi surface model predicts asymmetric unloading­
reloading curves where the ending point ofhysteresis loop coincides with its beginning point
since the movements of nesting surfaces in the reloading state are just the inverse of those
in the unloading state. Then. an unrealistically large hysteresis loop is predicted with the
rounding coefficient L = 2 (Masing rule) and a mechanical ratchetting effect cannot be
described tracing a fixed hysteresis loop cyclically. On the other hand. in the two surface
model a plastic modulus is prescribed by the distance from a current stress point on the
subyield surface to a conjugate stress on the normal-yield surface. Then. all the stress-strain
curves are of same shape except for elastic parts. Accordingly. the Masing effect cannot be
described by the two surl:lce model. i.e. L = I.

The multi surface model was mathematically relined to the intlnite surface model by
Mroz et al. (1981) assuming an infinite number of surfaces. It also involves. however. the
above-mentioned shortcomings. Recently. in order to avoid them. Klisinski (1988) and
Klisinski and Mroz (1988) proposed a method to remove a contact of the active loading
and the stress reversal surfaces by combining a restrained translation of the former to the
center of the latter and its expansion referring to the concept of the subloading surface
model. However. this modification leads to a more peculiar problem that the two special
lines arc generated in the domain enclosed by the stress reversal surface. along which a
stress rate induces a purely elastic deformation.

The two surface model was further simplified to the single surface model by Dafalias
and Popov (1977) making the inner yield surface shrink to a point so that an elastic domain
vanishes. and it was applied to metal by Dal~llias (1977) and to concrete by Fardis ct £If.

(19XJ). This model has the advantage to describe the mutual depenlkncy between the
directions of a stress rate and a plastic strain rale. while it is obviously incapable of
describing the plastic lkform:ltion due to the stress change along the normal-yield surface.
However. it is not applicable to the cyclic loading behavior predicting an excessive
ratchetting with an open hysteresis loop as well as the initial subloading surface model.
Also. it is incapable of describing a softening behavior at least by the existing formulation
as was indicated by Hashiguchi (19X5a. 19X8). Furthermore, this model is accompanied
with the mathematical inconvenience requiring analyses of nonlinear simultaneous equa­
tions in stress rate-strain rate analysis in general.

The subloading surface model does not assume a purely elastic domain. Also. when
the normal-yield and the subloading surfaces come into contact. their sizes coincide with
each other. i.e. R = I, while the plastic modulus monotonically depends on NSR. Thus. a
continuous stress rate-strain rate relation is described in a loading state. bringing about a
smooth elastic-plastic transition. Further. the extended subloading surface model for­
mulated in this paper is capable of describing fundamental plastic deformation behavior.
i.e. an anisotropic hardening/softening and a hysteresis behavior including the Masing
effect. a dosed hysteresis loop and a mechanical ratchetting clrcct consistently by taking
account of the movement of the similarity-center. i.e. the most clastic stress. Thus. it is to
be applicable to the prediction of cyclic loading behavior in the subyicld state. which has
been required as the unconventional clastoplasticity.

The radial mapping model docs not utilize the subloading surface and thus it uses the
ratio of the magnitude of the current stress to that of the conjugate stress instead of NSR
for the formulation of plastic strain rate equation by an interpolation method. These ratios
arc. however, mathematically the same when the subloading surface is similar to tht: normal­
yield surface as is postulated in tht: initial or the present subloading surface model.
Besides. the evolution equation of the projection-center is not formulated in a useful form
and thus it is actually fixed. Dafalias (1986) and Klisinski (1988) assumed a priori the
evolution equation of the similarity (projection or homology)-center which is the special
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form (isotropically and kinematically nonhardening normal-yield surface) of the equation
proposed by the author (Hashiguchi. 1985b) and is inapplicable to deformation analysis of
real materials with a hardening/softening. Thus. the concrete formulation of the radial
mapping is regarded to lie in the stage of that of the initial subloading surface model.
Besides. as was described in Section 4. the incorporation of the subloading surface is
inevitable in order to formulate the extended consistency condition from which a plastic
strain rate equation is derived reasonably. taking account of the physical requirement that
NSR increases with a plastic deformation without the use of ad hoc method such as an
interpolation. Further. the incorporation of the subloading surface would be unavoidable
for further extension to a more generalized model which does not assume the similarity and
to the tangential plasticity (Hashiguchi. 1989).

The subloading surface model as well as the other elastoplastic constitutive models
without an adoption of such an ad hoc method as the intersection or the corner of plastic
potential surfaces is incapable of describing the mutual dependency between the directions
of a stress rate and a plastic strain rate and also the plastic deformation due to the stress
change along the loading surface. however. Hereinafter. we should extend models so as to
describe these behaviors also. Dafalias (1986) advocated the "hypoplasticity" referring to
the hypoelasticity ofTruesdell (1955). His definition of hypoplasticity or the naming of this
term is not clear but he states that the hypoplastic constitutive equation includes a stress
rate direction tensor. i.e. a/llull so that it becomes an incrementally nonlinear equation.
while the hypoclasticity docs not premise on the existence ofa potential surface but excludes
the nonlinearity. Thus. it requires the analysis of nonline'lr simultaneous equations ofstress
rate strain rate. Obviously. it leads to a serious disadvantage to the analysis of boundary
valuc problems. Howcver. thcre docs not exist thc inevitahle rcason that one has to introdul:c
thc stress rate din:l:tion tensor dircctly in order to describe the mutual dependency between
the directions of a stress rate and a plastic strain rate as is e<.tsily seen by the fact that even
Ilooke's law. thc simplest linear equation. can describe a strain r.tte for any stress rate. and
ricC' IWSll. their directions aflecting each other. The further extension of the subloading
surface model within the framework of the ordinary bilinear equation so as to describe thc
above-mcntioned mutual dependcm;y .1I1d the plastic deformation hy the stress ehangc
along thc loading surface will he exposed in a subsequent paper.

A..ktwII'/..,(q"mt'1If -This paper was relim.-J in the period that the author stayed in Institute of Fundamental
Tedlllologil:al Research (II·TR). Warsaw. I'olam.!. The author express<:s his gratitude to Professor Z. Mrlll in
I FTR for his critical n:'lding of this paper ,lI1d valuable advice on clarity of expositioll of the proposed modd.
Thanks arc also due to Dr M. Ueno. Ryukyu University. Jap'ln and Dr A. Jam;bowski in II~TR for their kind
support 011 numerical cakulations in this study.
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