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Abstract—For engineering problems. the elastoplastic constitutive model has been required, which
is applicable to the prediction of cyclic loading behavior for various stress/strain amplitudes. The
subloading surface model has been proposed and developed in order to respond to this requirement.
The original subloading surface model {or the bounding surface model with a radial mapping) does
not assume a yield surface enclosing an elastic domain in which stress rates of any direction do not
induce a plastic deformation. Instead, it assumes a normal-yicld (or bounding) surface and a
subloading surface which always passes through a current stress point in not only loading but also
unloading states retaining a geometrical similarity to the normal-yield surface. Thus, it describes a
continuous stress rate-strain rate relation in a loading process, bringing about a smooth elastic—
plastic transition, and its loading criterion does not require the judgement whether a current stress
lies on a yield surface or not. It cannot. however, describe reasonably an induced anisotropy and a
hysteresis behavior for a stress change within the normal-yield surface, since the center of similarity
of normali-yield and subloading surfaces is fixed or the translation rule is not formulated reasonably.
In this paper an exact formulation of this model is presented by deriving a translation rule of the
center of similarity and a consistency condition for the subloading surface and by examining the
physical meaning of the loading critcrion in terms of a strain rate and the associated flow rule
concurrently for materials with an anisotropic hardening/softening and without an clastic domain.
1t is capable of describing an anisotropic hardening/softening, a smooth elastic-plastic transition
and a hysteresis behavior including Masing effect, a closed hysteresis loop and a mechanical
ratchetting effect consistently. This model is described for metals and is compared with test data of
the torsional cyclic loading behavior of stainless steel,

1. INTRODUCTION

A reasonable prediction of inclastic deformation of materials subjected to cyclic loadings
is of increasing importance for practical problems in engincering. The conventional
theory of plasticity is concerned only with a description of the remarkable plastic defor-
mation in the yicld state, ignoring a plastic deformation due to a stress change within the
yicld surface by assuming its interior to be an elastic domain. The “elastic domain™ is
defined as a domain in the stress space, in which stress rates of any direction do not induce
plastic deformation, i.e. in which only a purely elastic deformation can occur. Obviously,
the conventional theory is incapable of predicting cyclic loading behavior for small stress
or strain amplitudes. [ts extension to the description of plastic deformation induced by the
stress change within the yield surfuce is the inevitable step for the development of plasticity.
To this aim, various elastoplastic constitutive models have been proposed since Mroz (1966)
proposed the “model of a ficld of hardening moduli™. In the meantime, the author proposed
the “*subloading surface model” and refined it mathematically (Hashiguchi and Ueno, 1977;
Hashiguchi, 1978, 1979, 1980a, 1980b, 1985b). In this extension the state in which a stress
lies on the conventional yicld surface and the state within the surface are called a “'normal-
yicld state™ and a “'subyield state™, respectively, and the conventional yield surface is called
a “normal-yield surface”, while it was called a **distinct-yield surface™ in the previous paper
(Hashiguchi, 1980a). Besides, the “bounding surface™ in scries of Dafalias® papers (e.g.
Dafalias and Popov, 1975; and Dafalias, 1986) is also regarded as the conventional yield
surface, since the bounding surface evolves by the isotropic and kinematic hardening rule
of the conventional yicld surface. The surface in a stress space, on which a stress rate causes
a remarkable plastic deformation, has been called a yield surface as seen typically in the
perfectly plastic body as the simplest classical idealization. Here, one would have to be
deliberate in replacing the term “yield" surface used historically in the theory of plasticity
by the term “"bounding™ surface expressing a geometrical meaning rather than a physical
one.

The salient feature of the subloading surface model is the assumption of the *“subloading
surface™ which expands or contracts passing always through a current stress point in not
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only loading but also unloading states and retaining a geometrical similarity to the normal-
vield surface and s the description of a plastic modulus by the ratio of the size of the
subloading surface to that of the normal-yield surface. Thus, an elastic domain does not
exist and the plastic modulus changes continuously. Then, a continuous stress rate-strain
rate relation 1s described in a loading process, bringing about a smooth elastic-plastic
transition. and the loading criterion does not require the judgement whether a stress lies on
the vield surface or not since a stress lies always on the subloading surface.

Later on. Dafalias and Herrmann (1980) presented a similar idea of “radial mapping™
in which a plastic modulus depends on the ratio of the magnitude of the current stress to
that of the conjugate stress on the normal-yield surface but the loading surface is not utilized
explicitly, while its mathematical structure is substantially the same as that of the original
subloading surfuce model. They call it a “bounding surface model™ as well as the two
surface model (Datalias and Popov, 1975, 1976. 1977). The two surface model assumes a
small yield surface, called a subyield surface™ (Hashiguchi. 1981, 1988), which encloses
an elastic domain and moves with a plastic deformation within the normal-yield surface.
keeping its size constant relatively to the size of the normal-yield surface. Then, the two
surface model as well as the multi surface model (model of a field of hardening moduli)
(Mroz, 1966, 1967 ; Twan, 1967) s regarded as an extension of the kinematic hardening
model (Edelman and Drucker, 1951 ; Ishlinski, 1954 Prager, 1956) to the subyicld state.
Mroz (1967) stated “we generalize the rules of isotropic and kinematic hardening by
introducing the concept of a ticld ot hardening moduli™, where he regarded the conventional
yicld surface exactly as the outermost surface although he did not rename it in particular.
On the other hand, the subloading surface expands or contracts with & movement of the
current stress point even when a plastic deformation does not occur. Then, the subloading
surface model has a different structure from the two surface model although they are
occasionally called by the same term “bounding surface model™ (Dafalias and Herrmann,
1980 Dafulias, 1980). The bounding surtace is the yield surface in the conventional theory
as was described before. Since unconventional plasticity models are keeping this surface,
one cannot specify models by the term “bounding surtace model™, and it would not be
reasonable to call the two surface model and the radial mapping model by the same term,
since they haveditferent structures from cach other. On the other hand, the term “subloading
surface model™ would express conciscly the physicat feature of this model which is an
extension ol the conventional theory to the subyicld state by assuming the subloading
surface within the normal-yield surface.

The subloading surfuce model or the radial mapping model has been applied widely to
the prediction ofirreversible detormation of soils (Hashiguchi and Ueno, 1977 ; Hashiguchi,
1975, 1979, 19804 ; Dafalias and Herrmann, 1980, 1982 Aboim and Wroth, 1982 Pande
and Pictruszezak, 1982 : Dafulias, 1984 ; Zienkiewicz and Mroz, 1984 Naylor. 1985 Pastor
et al., 1985 Zienkiewicz et al., 1985 ; Anandrajah and Dafalias, 1986 Banerjee and Pan,
1986 Bardet. 1986:; Herrmann er al., 1986 Pietruszezak, 1986: Liang cr al, 1987
Zienkiewics and Pastor, 1987), concrete (Fardis er al., 1983 : Chen and Buyukozturk, 1985
Yang e al., 1985) and metals (Hashiguchi, 1980a). In these papers, however, the center ot
similarity of the normal-yield and the subloading surfaces is fixed in the origin of stress
space or on the central axis of the normal-yield surface, though it passed already a decade
after the advocation of this model (Hashiguchi and Ucno, 1977). Then, a stress strain curve
with an open hysteresis loop is predicted for the partial unloading -reloading cycle of stress
as was criticized by Mroz and Zienkiewicz (1984), and also the Masing effect (Masing,
1926) cannot be described. It would be the reason why this model has hardly been applied
to metals which undergo an elastic deformation in a wide range of stress compared with
geomaterials, whercas its basic concept seems available to a wide class of clastoplastic
;nu(cri;\ls. Thus. the author (Hashiguchi, 1980b, 1985b) has tried to extend it so that the
center of similarity translates with a plastic deformation. and Dafalias (1981) has tried it
for the special case limited to the uniaxial loading behavior of metal.

In this paper. a mathematically exact formulation of the subloading surfuce model 15
brought to completion by deriving a translation rule of the center of similarity, avoiding a
singularity in the field of plastic moduli. and a consistency condition for the subloading
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surface and by examining the physical meaning of the loading criterion in terms of a strain
rate and the associated flow rule for materials with an anisotropic hardening/softening and
without an elastic domain. Its capability for prediction of hysteresis behavior including the
Masing effect. a closed hysteresis loop and a mechanical ratchetting effect. which are the
fundamental properties of cyclic loading behavior in the subyield state, is shown concisely
by the analyses of benchmark problems in uniaxial loading. Further, this model is applied
to metals by determining material functions explicitly and is compared with test data of
the torsional cyclic loading behavior of stainless steel. Finally. mathematically inevitable
shortcomings of the other well-known models, i.e. the multi, the infinite, the two and the
single surface models are discussed. comparing with the present model.

2. BASIC CONSTITUTIVE EQUATIONS FOR THE NORMAL-YIELD STATE

Constitutive equations for the normal-yield state in which a current stress lies on the
normal-yield surface are formulated below, which belong to the framework of conventional
theory. and these will be extended to the subloading surface model in the subsequent
sections. While some of these equations were described in the previous paper (Hashiguchi,
19835a). they are repeated here since they are necessary for the formulation and explanation
of the sublouding surfiuce model.

First, assume that the normal-yicld surface is described by the following equation:

S(@)-F(H) =0 (O
setting
6 =g —d. ()

The sccond-order tensor a is a stress, and the scalar # and the second-order tensor @ are
internal state variables for describing the expansion/contraction and the translation, respec-
tively, of the surface. Let f— F < 0 hold in the interior of the yicld surfuce. For simplicity,
one assumes that the surface described by eqn (1) expands/contracts retaining a gecometrical
similarity in a stress space. Therefore, the function fis to be a homogeneous function which
satisfies the relations f(ax,) = ¢"f(x;) and Z,0f/dx,* x; = nf for any real ¢ and variables x,,
where n is the degree of homogeneity of the function /.

Let £, where a superposed dot designates a material-time derivative, be a function of
plastic strain rate £ (homogencous of degree one by dimensional invariance of time) and
some plastic internal state variables describing a history of plastic deformation.

Further, let 2 be given as

i=i % _bi 3)

where A and B arc functions of ¢” in homogeneity of degree one and some plastic internal
state variables, and the notation || || represents a norm (magnitude). (It can be set that
A=0und B= —F/F, resulting in 2 = — FI, for gcomaterials.)

By difTerentiating eqn (1) and substituting the relation

ﬂf(d)_ nfF o

Sypm = tT(n:tjn when f(d) = F 4)
_y@ [|ye
=56 / o6 )

which results from eqn (1). noting the homogeneity of the function £, one has the consistency
condition
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tr {ﬁ(a" 5_0)} =0. (6)

Here. assume that the associated flow rule holds for the normal-yield state :
é =i (4>0) (7

where 4 is a proportionality factor. .
By substituting eqn (7) into eqn (6) # is given as follows:

2 tr(ng)
f=s (8)

where

. JSF . .
D=tr {n(rﬁ_ha-{-a)} N

F

dF/dH. (10)
. - 1. . . . .
Since /f and z involve £ in homogeneity of degree one, one can write
. o
H = 4+h, (1)
4 = i (12)
A and a are scalar and sccond-order tensor functions of stress and some plastic internal
state variables. 0 is called a plastic (or hardening) modulus in conformity with the similarity
to the elastic modulus in a uniaxial loading state.
Let an elastic strain rate be given as

£=FE ' ord=F& (13)

where E (fourth-order tensor) is the elastic modulus.
Substituting eqn (7) with eqn (8) and eqn (13) into the equation

£ =g+, (14)
onc obtiins
ir (hé
f=E ar 105 (15)
D
or inversely
tr (AEE
;= E{é_ (R } (16)
D +tr (nEn)

The constitutive cquation (15) or (16) by itself falls within the framework of the
conventional theory of clastoplasticity in which the interior of the normal-yicld surface is
assumed to be an elastic domain. Therefore

(1) the discontinuous stress rate-strain rate relation is predicted, which changes
abruptly at the moment when the stress reaches the normal-yield surface;
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(2) the loading criterion requires the judgement whether the current stress lies on the
normal-yield surface or not;

(3) obviously. the hysteresis loop for the partial unloading-reloading, Masing effect
and the mechanical ratchetting phenomenon cannot be described. It is inapplicable to the
cyclic loading behavior in the subyield state.

3. FUNDAMENTAL ASSUMPTIONS AND THEIR PHYSICAL INTERPRETATIONS

As was described at the end of Section 2, the elastoplastic constitutive model in
which the interior of the normal-yield surface is assumed to be an elastic domain has
fundamental limitations. In the following. let the models in this structure be called
“conventional (elastoplastic constitutive) models”, and let the extended models (e.g. the
multi, the infinite, the two and the subloading surface models) to the subyield state be
called “unconventional models” in accordance with Drucker (1988). Prior to extending the
equations in Section 2 to the subloading surface model as an unconventional model. the
fundamental assumptions for new formulations and their physical interpretations are given
in this section.

3.1. Assumptions

The following assumptions are incorporated into the subloading surface model which
will be formulated so as to overcome the aforementioned limitations in the conventional
model.

(1} The surfuce, called a “subloading surface”, exists, which expands/contracts within
the normal-yield surfuce, passing always through a current stress point not only in a loading
(clastoplustic) process but also in an unloading (clastic) process.

[11} The subloading surface is similar to the normal-yield surfuce, and these surfuaces lie
in positions of similarity, preserving the same orientation without relative rotation.

By the assumption [11] a center of similarity (or similarity-center) exists for the specified
configuration of the normal-yicld and the subloading surtuces. Let the position vector of
similarity-center be denoted by S. Besides, in view of the assumption {I], the similarity-
center must lie inside the normal-yield surface.

The similarity-center of two figures is characterized by the fact that the straight lines
issuing from it intersect with the corresponding (or conjugate) points on these figures in a
constant ratio of distances from the center, provided these figures are not only similar but
also are located in positions of similarity. In the case of two surfaces whose geometrical
centers are specified, the above-mentioned straight lines intersect with these surfiaces and
with their centers in a constant ratio of distances from the similarity-center. Needless to
say, the geometrical centres of these surfaces are different from cach other and also are
different from the similarity-center in general.

(I} The similarity-center does not lie on the normal-yield surface.

In the state that the similarity-center lies on the normal-yield surface, the subloading
and the normal-yield surfaces contact with each other in their different sizes. If the stress
coincides with similarity-center in this situation, the aforementioned ratio of the distances
becomes indefinite so that a subloading surface is not determined uniquely. Thus, the
contact point, i.e. the similarity-center, becomes the singular point of a field of elastic~
plastic moduli which causes a discontinuity of stress rate-strain rate relation, while the
subloading surface plays as a loading surface as will be described later as to the assumption
[I'V]. This is physically inadmissible in general, although it has been widely assumed fol-
lowing the first proposition of this model (Hashiguchi and Ueno, 1977) for soils in such a
way that the similarity-center is fixed in the origin of stress space and the normal-yield
surface passes through it. Eventually, this assumption is required to guarantee that the
subloading surface is always uniquely determined and thus a continuous stress rate—strain
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rate is always described for the non-zero strain rate. (The indifferentiability of a stress rate
with respect to a strain rate in the neighborhood of the null strain rate is the fundamental
property of the irreversible deformation although Truesdell (1935) excluded it in the hypo-
elastic equation.)

(] The similarity-center moves (more excatly. can move only) during a loading
(elastoplastic) process but does not move during an unloading (elastic) process.

In view of this assumption the similarity-center can be regarded as a plastic internal
state variable as well as F and % in the conventional model. On the other hand. the geo-
metrical center of the subloading surface, denoted by %, is not a plastic internal variable as it
evolves even during an unloading (elastic) process in accordance with the assumption [I].
Whereas, & is determined from the geometrical relations of ¢. F. & and S since the sub-
loading surface is similar and is located in a position of similarity to the normal-yield surface.

Now, one introduces the ratio of the size of the subloading surface to that of the
normal-yield surface. Let it be called a “*NS-surface size ratio™ (abbreviated as “NSR™)
and let it be denoted by R. Needless to say. NSR ranges from zero to unity. Hence,

{(TV] NSR increases and approaches unity when a plastic deformation occurs. Inversely,
a plastic deformation occurs when NSR increases.

By this assumption NSR decreases or does not change when a purely clastic defor-
mation occurs, and inversely a purely elastic deformation only can occur when NSR
decreases or does not change. Thus, the subloading surface plays a role of loading surface.
This 1s a physical background of the term “subloading surface™. Besides, it is not required
to judge whether a stress lies on the loading surface or not in a loading criterion since a
stress always lics on it by the assumption [1], while the judgement whether a stress lies on
the yield surface or not is required in conventional models,

[IV'] A plastic deformation generated in the null NSR state is infinitesimal.

Now, note that the null NSR state (R = 0: 6 = 2 = §) 1s the minimum state of NSR
since R 2 0. Then, by the assumption [IV], only a purely clastic deformation tor R < 0 can
oceur to reach the null NSR state, and after that an clastoplastic deformation for £ > 0
occurs. Now, if a plastic deformation occurs fimtely in the null NSR state. a stress rate
strain rate relation becomes discontinuous in this state by the abrupt occurrence of plastic
deformation even if a stress path is smooth. In other words, the null NSR state becomes a
singular point of the field of elastic—plastic moduli. In order to avoid this physical and
mathematical shortcoming, the assumption [1V] is accompanied with the subsidiary assump-
tion [IV’]. Thus, it results that the ratio of the rate of NSR, i.e. R, to that of the magnitude
of plastic strain rate is infinite in the null NSR state. Eventually, a purely elastic deformation
occurs substantially in the null NSR state.

Besides, by the assumptions [IV] and [IV’), the state in which a purely clustic deforma-
tion occurs for stress rates of any direction is realized in the null NSR state. In other words,
an elastic domain exists merely as a point and only in the position of similarity-center.

[V] When NSR is unity, i.e. in the normal-yield state, a stress rate=strain rate relation
is given by the conventional equations described in Section 2.

This assumption lcads to that the subloading surface model formulated later is the
extension of the conventional model and thus it does not leap from it. Consequently, all
the equations described in Section 2 hold in the normal-yicld state.

3.2. Physical interpretations of assumptions

In the initial subloading model (Hashiguchi and Ueno. 1977 Hashiguchi. 1978,
1980a) or the bounding surface model with a radial mapping (Dafalias and Herrmann,
1980). the similarity-center is fixed in the origin of stress space or in a certain point within
the normal-yield surface. As the simplest case one considers the uniaxial loading behavior
of the idealized material with the nonhardening Mises normal-yicld surface and with an
initial isotropy as shown in Fig. 1 in which o and & are axial components of ¢ and £",
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respectively. By the initial subloading or the bounding surface model with a radial
mapping, all the shapes of initial loading. reverse loading and reloading curves are predicted
to be the same and only an elastic deformation is predicted in an unloading process since
the subloading surface shrinks as a stress decreases. Therefore, the Masing effect is not
described and an open hysteresis loop is predicted. These shortcomings are caused by the
structure of this model in which the similarity-center is fixed.

On the other hand. let the similarity-center move with a plastic deformation as shown
in Fig. 2 in which S and 4 are axial components of the similarity-center S and the center of
the subloading surface. %. respectively. By the premise of initial isotropy. the similarity-
center lies at the origin of stress space and the subloading surface is merely a point without
a size at the onset of initial loading as shown in Fig. 2(a} and it expands gradually as the
stress increases so that a plastic deformation is generated and therefore the similarity-center
also moves up following a stress as shown in Fig. 2(b). On the other hand. in the unloading
state shown in Fig. 2(c). the subloading surface shrinks gradually and reduces to a point
when the stress decreases to the position of the similarity-center so that only an elastic
deformation is generated and therefore the similarity-center does not move in this process.
But after the stress passed through the position of similarity-center the subloading surface
expands again {rom the point so that a plastic deformation is generated gradually, and
therefore the similarity-center moves as shown in Fig. 2(d). In other words, a plastic
deformation begins before a stress vanishes so that the Masing rule can be described to
some extent. Further, in the reloading process shown in Fig. 2(e). the subloading surface
shrinks gradually and reduces to the point when a stress increases to the position of the
similarity center so that only an elastic deformation is generated and the similarity-center
does not move in this process similarly to the initial stage of unloading mentioned above.
Subscquently, the subloading surface expands so that a plastic deformation proceeds and
the similarity-center moves up following the stress as shown in Fig. 2(0). A description of
closed hysteresis loop is attined in this manner, whereas, the reloading after a small
unloading in a purcly clastic deformation (i.e. the increase of @ prior to its decrease to Sin
Fig. 2(¢)) causes an open hysteresis loop.

Physical meaning of similarity center. The Bauschinger effect means that the yield
stress in the reverse loading becomes smaller than that in the initiad loading, inducing a
plastic deformation. It gives rise to the induced anisotropy of plastic deformation behavior
in the normal-yield state. This effect is deseribed concisely by the kinematic hardening in
which the center @ of normal-yield surfuce moves with a plastic deformation. Here, 4 is
regarded to be a geometrical center of elastic domain. On the other hand, the Musing rule
is characterized by the fact that a curvature of the reverse loading curve becomes smaller
than that of the initial loading curve. Further, a closed hysteresis loop during the unloading-
reloading process is caused by a small plastic deformation in the unloading process prior
to a purcly clastic deformation at the onset of reloading. These phenomena are interpreted
to be caused by the fuct that the stress state, in which materials deform most elastically, is
not fixed in its null state but moves following a current stress during a plastic deformation.
As was described as to the assumptions [IV] and [IV’], the similarity-center S expresses this

oy

EP

Fig. I. A schematic diagram of uniaxial loading behavior predicted by the initial subloading surface
model (bounding surface model with a radial mapping).
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Fig. 2. A schematic diagram of uniaxial loading behavior predicted by the subloading surface
model: (1) a beginning state of an initial loading (¢ =S =4 =0, R =0); (b) an initial load-
ing process (6 > 0, $> 0. R > 0); (¢) an unloading process until ¢ decreases to S (6 <0, $ =0,
R < 0: elustic deformation); (d) an unloading reverse loading process after ¢ passed through
S(6 <0, $<0, R>0); (¢) a reloading process until o increases to § (6 >0, $=0, R<
0: elastic deformation); () ua reloading process after a passed through S (6 > 0, § >0, R > 0).
e e e S,

stress state, called ““the most elastic stress™, and its movement gives rise to the induced
anisotropy which affects a response for a small plastic deformation in the subyicld state.
Thus, while the center of normal-yield surface, &, can be called a ““geometrical center of
elastic domain™ (in the conventional sense) or a “"normal-yield back stress™ or a ““normal-
yield kinematic hardening parameter™, the similarity-center S can be called “*the most elastic
stress™ or a “subyield back stress™ or a “subyicld kinematic hardening parameter™, Also,
F can be called a “size of clastic domain™ (in the conventional sense) or an “isotropic
hardening parameter™.

The conventional isotropic/kinematic hardening model involves only two internal
variables, i.e. F and d. On the other hand, the extended subloading surface model involves
three internal variables, i.e. F, a and S. Then, the formulation of the evolution equation of
the similarity-ccnter S is to be the main problem in the extension of the conventional model
to the unconventional onc.

Physical meaning and role of NSR. It seems plausible to assume that the plastic
deformation occurs when a subloading surface expands. During a softening process,
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shrinks

{4}
Fig. 2. (continued).

however, the normal-yield surface itself shrinks and thus the subloading surface also shrinks
when they approach closely one to the other. Therefore, it cannot be assumed in general
that a plastic deformation does not occur when the subloading surface shrinks. This is the
physical background of the assumption {IV] which is described by the NSR (not by the
expansion/contraction of the subloading surface itself). Besides, this assumption should be
incorporated into the formulation of constitutive equation. If not, it is not guaranteed that
a stress approaches the normal-yield surfuce even when a plastic deformation proceeds
infinitely. Its incorporation will be done in a formulation of the “extended consistency
condition™ for this model in which a stress does not lie generally on the normal-yield
surface, while in all other models including the multi, the infinite, the two and the bounding
surface models, their plastic strain rate equations have been assumed a priori by using some
interpolation rule for plastic moduli between the elastic and the normal-yield states.

As was described as to the assumptions [IV] and [IV’], this model involves an elastic
domain as a point. However, almost purely elastic behavior can be described in the subyield
state by selecting the high plastic modulus as a function of R. In other words, it can be
reduced to the conventional model.

4. FORMULATION OF SUBLOADING SURFACE MODEL

Based on the assumptions described in Section 3, let the subloading surface model be
formulated in this section.
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The subloading surface is described by the assumption [II] on similarity of the sub-
loading surface to the normal-yield surface as

f(é)=R"F 17
in setting

F=0—% (18)

Iit

where the function f(d) has the same form as the homogeneous function f(d) in eqn (1).
R is described by current values of ¢, & and F as

=y Hin
R= {f%} O<R<D. (19)

Also, by the assumption [II] on simifarity. the following geometrical relations hold
(see Fig. 3)

¢ = Rd, (20)
S = RS (21
é = Rd, (22)
n=n, (23)
where
é=0-S (24)
8, =a,-8 (25)
S=S-4 26)
§=S-4 27
¢, =0,~4 (28)

Fig. 3. Configurations of ¢, S, # and 4. (a) Normal-yield surface {b) subloading surface.
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__ @ [|ef
i, Er?f(c) /uaf(a) ' 0)

6. denotes the conjugate stress on the normal-yield surface for the current stress o on the
subloading surface, while the outward normals at these stresses on the surfaces have the
same direction.

[n the above, there appear the variables o, F, 4, S, R, 4, and o,. There exist four
independent variables among them. Now, let the expressions of R and Z by the basic
variables, i.e. the current stress o and the plastic internal state variables F, & and S be
explained below, which is required in calculation of stress rate-strain rate.

Substituting the relation

+RS €2y

Q.

G =
which is obtained from eqn (21), into eqn (17), one has
f(@+RS) =R"F (32)

from which one can determine R substituting the current stress o and internal variables F,
@ and 8. Further, substituting & and S and the alrcady determined R into the equation

U»

a=S-R (33)
which is obtained from eqn (31), & is determined.

Now, let the extended evolution equation of @ to the subyield state be formulated. In
accordance with the assumptions [I1] and [V], assume that the translation rule (3) of the
normal-yicld surface holds even in the subyield state, regarding o in eqn (3) as a conjugate
stress a,. Hence, noting the relation (22), eqn (3) becomes

a=A —'L — Ba. (34)
el

Next, consider the evolution equation of the similarity-center. It must hold by the
assumptions [I], {II] and [II’] that

SS) <x°F (35)
or
R, <y (36)
where
&y )i/n
R, = {-f-}s—’} O<R <), (37)

x(0 < x < 1) is a material constant. The surface described by f(S) = R!F is depicted by
the dashed line in Fig. 3.
Equation (35) is rewritten as
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(2 F .
tr {n,(S—- ;};S)} <0 whenR =y {38)

in a differential form, using the relation

éf(S) _ WF 5
S @S

when R, = x (39)

where

Slt

(2|28

Equations (35) or (36) and (38) will be called an “enclosing condition of similarity-
center”.
In order to satisfy eqn (38), referring to Fig. 3. assume that

PO
S— w8 =Cli"le,~S,) when R =y @n

where S, designates the intersecting point of the normal-yield surface and the straight line
issuing from the point d and passing through the point S in the stress space, 1.c.

=4 9
x4+ R (42)

%]

C(=0) is a material constant which controls the rate of translation of the similartty-center.
On the other hand, for R, = 0, 1.¢. S = 4, one assumes that

s F
S~ E?S = Cl|é"[(a, —d) when R, =0. (43)
In Fig. 3, n,, is the outward normal of the normal-yicld surface at the point S . i.e

(44)

;cs)/~

=

|

sy

setting
§, =8 ,-4 (45)

For eqns (41) and (43) to be satisficd, one assumes the following lincar equation of R,
as the simplest one

2 i:* e Rr -
S— - S=C|e} {o‘,.»ai+ (amS‘.)} (46)
nF ; %
which is rewritten as
2 F . é S
—_—— s = PN - — - 47
S nFS Clé II<R X)' 47

noting eqns (22) and (42).
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Eventually, the translation rule of S is given from eqn (47) as follows:

-~

. F 4 éi S
= — P | — — — 4
S=4+ =S +Cllé “(R X) (48)
which reduces to
C .. s : :
S=§lle"lla= Cl¢’|d, whenF=0, =0, x=1 (49)

The evolution equation of 4 given by eqn (3) conforms to Ziegler’s (1959) modification
of Prager’s (1956) kinematic hardening rule due to a mathematical convenience that the
components of d in the directions of null stress condition vanish throughout a deformation
for initially isotropic materials. However, it does not differ from Prager’s rule in the case
of metals with von Mises yield surface. Equation (34) is the extension of eqn (3) to the
subyield state. Further, the evolution equation of the similarity-center given by eqn (48)
also involves this mathematical convenience eventually. Then, all the components of &, S
and & [see eqn (33)] in the directions of null stress condition vanish consistently throughout
a deformation, while a more due consideration is required to clarify whether it has a
physically inevitable reason too.

Next, one formulates a consistency condition for this model in which a current stress
does not lic on the normal-yield surface in general.

Differentiating eqn (32) and noting the relation

Jf(6) nR"F _
" S wae™ (50)
one has
u{ﬁ(é+k§-£&- 2&)}=0. (51)

In order to obtain from eqn (51) a consistency condition by which a plastic strain rate
will be formulated, let an evolution equation of R, i.e. R, be assumed. In accordance with
the assumptions [IV] and [IV’], one introduces the equation

R=U|é| fore? £0 (52)
where U is a monotonically decrcasing function with respect to R satisfying the conditions

U=+ forR=0
U=0 forR=1. (53)

The Masing rule and a closed hysteresis loop arc described to some extent by the
movement of the most elastic stress S. However, note that if U is a function of R alone,
eqn (52) results in R—R, = f(&? —&) for R = R,: & = & where & is the accumulated
plastic strain, i.e. £ =j'l|é” [ d¢ (¢, time). Therefore, the accumulated plastic strain &
generated until R reaches a certain value from a certain state (R, £7) in a loading (elasto-
plastic) process is the same independent of an initial loading, reverse loadings and reloadings
after unloadings of various magnitudes. This would not be realistic as known from the fact,
for example, that the plastic strain generated during the reloading process after a small
unloading is to be far smaller than that during the initial loading process. Then, assume
that the function U depends not only on R but also on a distance from the current stress o
to the conjugate stress a,. As a measure of this distance, one introduces the non-dimensional
parameter A
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S fe,—a)|'"
{—7*} (>4

Xa
I

which is rewritten by eqn (20) as

1 ~ <
R, = (E—1>R 35

where
- f(a-)}! n
R=<{—— . 56
{ F (36)
Thus. the function U is given as
U=UR.R) orU=U(R R). (57)

Obviously U must be a monotonically decreasing function with respect to R, or R too.
Examples of the function U are

U=u,(1-R™/R (58)
U= —u,InR/R (39)
where wy, u, and m arc material constants.

Substtuting cqns (48) and (52) into eqn (51), one obtains the consistency condition
for this extended model :

tr [ﬁ(é— :—;é— {C(I —-R)(Z - i>+ %5}ue"u)] = 0. (60)

Here, assume that the associated flow rule holds also for the subloading surface:
&7 = in. (6h

By substituting eqn (61) into (60), the proportionality factor Lis given as

i tr (gd)‘ 62)
where
DElr[ﬁ{%ﬁ&+i+C(I—R)(%—§)+%&}]. (63)
Since H and « involve & in homogeneity of degree one, one can write them as
H =k, (64)
é = fa. (65)

f and @ are scalar and second-order tensor functions of stress and some plastic internal
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variables. The loading criterion and the physical interpretation of the associated flow rule
for this extended model are given in the next section. )

It should be noted that eqns (61)-(63) lead to D — x (¢ =0) for R<land D=D
for R = 1 by selecting U — o for R < 1 [u; — 20 or u; — oo in eqn (58) or (59)]. In other
words. this model reduces to the classical constitutive equation by the selection of material
parameters, the interior of the normal-yield surface becoming an elastic domain sub-
stantially.

For the special case of S = d = 4, the function D of eqn (63) reduces to

D=tr I:ﬁ{(:—F h+ %)&4»5}]. (66)

Further, for S = & = & = 0 with @ = 0 and C = 0, the function D reduces to
_ F U
=1{— — o). 67
D (th'+ R)tr(na) (67)

[n the above, the plastic modulus D was derived logically by formulating the consistency
condition on the premise R > 0 for £ # 0, while the plastic modulus has been assumed a
priori in the past formulations by interpolation rules (Hashiguchi and Ueno, 1977; Hashi-
guchi, 1978, 1979, 1980a ; Dafalias and Herrmann, 1980 ; Dafalias, 1986 ; Zienkiewicz and
Mroz, 1984, etc. for S = & = & = 0 and Hashiguchi, 1980b, [985b for § # 0).

Combining clastic and plastic strain rate cquations (13) and (61) with cqn (62), one
obtains

é=FE '¢+ E—(gﬂﬁ (68)
or inverscly
g = E{é— :ii(—'lﬁ—:_f)-;-ﬁ}. (69)
D +tr (nEn)

5. A LOADING CRITERION AND THE ASSOCIATED FLOW RULE

A loading criterion formulated in terms of a strain rate instead of a stress rate with
the outward normal of plastic potential surface and the elastic modulus was induced by
Hill (1958), premising on a hardening process. This criterion seems applicable to generalized
elastoplastic materials with hardening/softening behavior. Later on, Hill (1967) formulated
it on the postulate that a strain rate space is divided by a hyperplane into the two domains
which cause a loading and an unloading, respectively. Besides, Mroz and Zienkiewicz (1984)
formulated it on the postulate that a strain space is divided by a yield surface into the two
domatins which cause a loading and an unloading, respectively. [t does not belong to the
ordinary stress space formulation but falls within the so-called strain space formulation in
which the constitutive relation of a stress rate and a strain rate is formulated by a strain
(not a stress) and plastic internal variables. Both of them are not straightforward for-
mulations from the postulate on the ordinary loading surface in the stress space. Whereas,
the strain space formulation premises at present that the interior of yield surface is an elastic
domain and that the yield surface includes a null stress state, because of the decomposi-
tion of strain into elastic and plastic components. Thus, the existing strain space formula-
tion is regarded as the untraditional representation or interpretation of the classical
elastoplasticity.
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The physical interpretations of the associated flow rule were given by Drucker (1951)
and by Ilyushin (1961). The former belongs to the stress space formulation but premises
the existence of the yield surface enclosing an elastic domain and the latter belongs sub-
stantially to the strain space formulation.

The present model does not premise the existence of an elastic domain and also does
not use a strain belonging to the stress space formulation. In this section. a physical
interpretation of the above-mentioned loading criterion by Hill is given from the postulate
on the loading surface in a stress space within the framework of the stress space formulation
for the generalized materials without an elastic domain but with hardening/softening
behavior, while the formulation of this loading criterion was discussed briefly by the author
{Hashiguchi, 1988) on the premise of the associated flow rule. Further. the associated flow
rule is derived from this loading criterion and from Ilyushin’s hypothesis of a non-negative
work done during a strain cycle. In this section let a loading and an unloading mean the
processes during which a plastic deformation occurs and does not occur, respectively.

Now, one introduces a loading surface:

fle. H)=0 (i=1.2,..., n) (70)

where scalar or tensors H, denote collectively plastic internal variables, and f < 0 for the
interior of the loading surface.
Differentiation of eqn (70) leads to the consistency condition

AV

do =

Here, lct it be assumed that a plastic strain rate £” is expressed as
& =Aim (A>0, |m|=1 (72)
where 4 is a proportionality factor determined below, and m is a normalized second-order
tensor which is a function of stress and some plastic internal variables.
H, can be expressed by eqn (72) as

H, = ih, (73)

where scalars or tensors 4, are functions of stress and some plastic internal variables.
Substituting eqn (73) into egn (71), we have

)
tr b;d

i= (>0 fore” #0) (74)
n {‘)f h
- ,._Z, oH, !
or
i= 5’—%‘2 (>0 foré" #0). (75)

where
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= éf ef
=~y —h /| 76
T x';aH-‘hl/ o’ {76)
5f Il Efi
=L /L 77
"= e / $ Ea] ’ a7
Substitutions of eqns (13), (14) and (72) into eqn (75) lead to
;. o 1
Q= tr {(nE(¢— im)} (78)

D

from which one obtains the expression for £ by the strain rate instead of a stress rate. Let
it be denoted as A:

tr (nEg) "
= 79
T+ tr (nEm) (>0 fore” #0) 79
by which eqn (72) is rewritten as
& = Am. (80)

Now, one derives a loading criterion for the constitutive equation which satisfies the
following assumptions.

[V1] A plastic deformation occurs at least when a stress rate has an outward direction
of a loading surface.

(VU] A strain rate of any direction can occur in any state, while a stress rate cannot
occur in arbitrary direction in general (suppose a perfectly plastic and u softening processes).

The assumption [VI] is described as
& #0 whentring) >0 (81)

which means that the inequality tr (ng) > 0 is a sufficient condition for a loading.
Thus, it must hold that

tr(ng) <0 wheng” =0 (82)

which means that the inequality tr (nd) < 0 is a necessary condition for an unloading. This
condition is not, however, a sufficient condition for this state. (It holds also in the loading
with a softening.) Since it holds that & = E£ in an unloading (¢ = £°), the necessary condition
(82) for an unloading is rewritten as

tr(nEé) <0 wheneg” =0 (83)

by a strain rate instcad of a stress rate. As known from the relation tr [nE(—8)] = —tr (nEé),
the strain rate space is divided into half spaces by the sign of tr (nEg).
Now, it can be stated from eqn (79) that

(1) if D+1tr(nEm) < 0, a loading cannot occur for tr (nEé) > 0;
(i1) if D +tr (nEm) = 0, a loading cannot occur except for the special process tr (nEg) = 0,

while an unloading also cannot occur in the deformation process tr (nEé) > 0 by the
necessary condition (83). The admissible strain rate and stress rate with the signs of © and
tr (nEm) under the condition A > 0 were examined by Mair and Hueckel (1979) in detail.

SAS 25:8~G
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Accordingly. a deformation bringing about tr (nE¢) > 0 cannot occur at all in both a
loading and an unloading if D+tr(nEm) < 0. This contradicts the assumption [VII].
Thus. it must hold that

D+tr(nEm) >0 (84)

in order to satisfy the assumptions [VI] and [VII], and by taking account of eqn (84) into
the subsidiary condition A > 0, it must hold that

tr(nEé) >0 whené” # 0 (85)

which means that the inequality tr (nEg) > 0 is a necessary condition for a loading.

The necessary conditions (83) and (85) for an unloading and a loading, respectively.
exhibit different ranges of the quantity tr (nE€) from each other. while only either of these
processes can be taken. Then, it results that they are not only necessary but also sufficient
conditions for each process. Eventually, a loading criterion is given as

& #£0:tr(nEé) > 0,
& =0:tr(nFg) <0 (86)
which was shown by Hill (1958), presupposing © > 0.

Whercas, 4 in eqn (75) is not applicable to hardening/softening materials, since 4 > 0
holds not only in a loading but also in an unloading for the state D < 0 [for which a
softening tr (ng) < 0 proceeds if a loading takes place].

Hyushin (1961) postulated that the work donce during a strain cycle is non-negative,
i.c.

é;tr (o de) 2 0. (87)

For an infinitesimal strain cycle, eqn (87) is written as
tr(de” de) 20 ortr(c”é) 20 whene’ #0 (88)

where 67 is a plastic relaxation stress rate, i.e.

g
A
b
a0
da'i N
d
0 e B e ,jEp €
-—l e dE

Fig. 4. A non-negative work done during a strain cycle.



Subloading surface model in unconventional plasticity 935

d’ = Eé, 89

referring to Fig. 4 in which the elastic lines ab and cd are regarded as parallel since one
considers the infinitesimal strain cycle.
Substituting eqn (80) into eqn (88), one has

tr (mEé) >0 whené” # 0, (90)

while the strain rate satisfying this inequality occupies a half of strain rate space. In order
that eqn (90) is fulfilled for an arbitrary strain rate in the loading process, i.e. eqn (86), it
must hold that

m = n. 91

Equations (72) or (80) with eqn (91) is the associated flow rule.

6. QUANTITATIVE DESCRIPTIONS OF BENCHMARK PROBLEMS IN UNIAXIAL LOADING

Let the basic characteristics of the present model be examined by the quantitative
descriptions of some benchmark problems in uniaxial loading. In order to do it concisely,
one adopts the nonhardening von Mises normal-yield surface. Thus, for a uniaxial loading
the normal-yield state is described by

lol =F 92)
with

F=0, é=0, n=1 (93

and eqn (32) is written as
{6+ RS| = RF 94)

from which R is given as
R= 3 g (95)

B_—lF-S

where 4 is the axial component of 4. And & is given from eqns (33) and (95) as

%F—-a
oz=S(l—R)=S5 (96)
—F-§
|
Let the function U be given as
U= u(l1-R™)/R", 97

where u, m and n are material constants.

If one adopts a value close to unity for the material constant x, the evolution equation
of the similarity-center is given from eqn (49) by
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(E®0. So)

tan-* (/34 CF) o
P
/
//\ tan (/5 CF)
-F
Fig. 5. Relation of S versus ¢” (x = 1) in uniaxial loading.
S=CJUFES)& (x = D). (98)
[ntegration of eqn (98) leads to
5-35,
= +[l—exp {C /3" —eh)) 99
s, = tll-ew (/A6 -l (99)

for the initial condition § = §,: &” = &f. In these equations the upper and lower cases stand
for & > 0 and & < 0, respectively. S—&° curves described by eqn (99) have a unique shape
as shown in Fig. 5, while the curves for tension and compression are asymmetric to each
other.

The axial plastic strain rate is given from cqns (61)-(63) as

g
£= /23 . S e (100)
v ICH-R)+UNFFS)

Although the equations for the uniaxial loading are given above in order to exhibit
the features of the present model concisely, the calculations were performed by the six-
dimensional numerical program based on the exact equations in Section 4 and eqn (97).
The calculated results are shown in Fig. 6 in which material constants are selected as

F=100MPa, u=5 m=5 n=7 C=700, x=099

which causes a large plastic deformation compared with usual metals, in order to exhibit a
hysteresis and ratchetting behavior clearly.

The initial loading and the unloading-reloading curves are shown in Fig. 6(a) in which
a closed loop is observed.

(a)
T T T
100~
Gg. 5. a o —"
{MPa} | . i
a/’
e
0 e T e Y N ]
) 1 L
0 E”(%) 02
Fig. 6(a).

Fig. 6. Uniaxial loading behavior calculated by the subloading surface model : (a) the initial loading,

the unloading and the reloading curves: (b) the hysteresis loop for |6} < 99.5 MPa: (c) the cyclic

loading curve for a large stress amplitude (7 = 0 ~90 MPa) : (d) the cyclic loading curve for a small
stress amplitude (¢ = 50 ~90 MPa). — ¢, ~——~-—— 5§, -—~-- 1.
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(b)
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Fig. 6(b).
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Fig. 6(c).
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The hysteresis loop for the range of stress +99.5 MPa is shown in Fig. 6(b) in which
the Masing rule is expressed to some extent. The Masing rule is described as (Mroz. 1966) :
When one represents the initial loading curve as ¢ = f(¢). the reverse loading curve is
described as (6,—0).2 = f((g,—¢€)/2) where ¢, and ¢, are values of ¢ and axial strain ¢ at
the onset of reverse loading. On the other hand, the reverse loading curve in real materials
is described as (o,—0)'L = f((e,—¢€)/L) where L(1 < L < 2) can be called a “rounding
coefficient™, and this phenomenon can be called a “Masing effect™ referring to the
Baushinger effect. For L = | the shapes of an initial and a reverse loading curves coincide
with each other. On the contrary, for L = 2 the stress and the strain generated in a reverse
loading process are twice those in an initial loading process, i.e. the Masing rule itself.
[t is observed in Fig. 6(b) that L ~ 1.5, while L is controllable in the range | < L <2 by
the selection of the material parameter C: L = | for C = 0, i.¢. the initial subloading surface
model, and L approaches 2 for C » U for which the o —¢” curve approaches the §—¢”
curve shown in Fig. 5.

The cyclic loading behavior for the large stress amplitude 0-90 MPa and the small
stress amplitude 50-90 MPa (50 cycles) is shown in Fig. 6(c and d) in which mechanical
ratchetting and its shuke-down phenomena are observed. while for a small stress amplitude
open loops are repeated until § reaches the range of ¢. The shake-down s not attained
completely and finally the cycle proceeds in a constant interval of plastic strain which is
smaller for a smaller stress amplitude. A modification is required to attain a stronger shake-
down by making the function U in the evolution equation of R be a function of an
accumulated plastic strain & in addition to R and R so that a deformation becomes purely
clastic gradually with the increase of €.

As shown above by some basic examinations though they are the simple cases, it would
be conceivable that the subloading surface model has a basic structure applicable to the
prediction of cyclic loading behavior in not only normal-yicld but also subyield states.

7. CONSTITUTIVE EQUATIONS OF METALS AND THEIR COMPARISONS WITH AN
EXPERIMENT IN SIMPLE TORSIONAL CYCLIC LOADING

The basic formulation of the subloading surface model was given in the preceding
sections. Based on it, let the explicit constitutive equations of metals be formulated below
in the form applicable to the analysis of cyclic loading behavior.

Let the normal-yield surface be given as

f(é) = /31214 (101)

FIH) = F[V+h {l—exp (—hH)} (102)

% = llé”ll<k.'g———k3i) (103)
e

= 23R || (104)

where F, is an initial valuc of F, and hy, hy, ky, k, and v are material constants, and
¢’ =d—itrél (105)
R will be explained later. .

The nonlincar kinematic hardening rule proposed by Armstrong and Frederickson
(1966) and refined by Marquis (1979; see also Benallna and Marquis, 1987) is
& = k&” —k,|é"}|4. Equation (103) is regarded as a modification obeying Ziegler’s
(1959) proposal for mathematical convenience which was described in Scction 4 ; whereas,
eqn (103) is integrated as

T b —exp {Fha S =D (106)

Xy

ki
k

+

‘e

for the initial condition d = 4, : & = £} in uniaxial loading. where the upper and the lower



Subloading surface model in unconventional plasticity 939

cases stand for tension and compression, respectively. Here, it is worthwhile to notice that
all the equations (99), (102) and (106) of the internal variables S, F and 4 reduce to the
same exponential form of plastic strain in the uniaxial loading. Besides, eqn (99) and (106)
describe concisely the gradual saturations of translations of S and & during a monotonic
loading and the abrupt recovery of translations at the onset of stress reversal, which are
typical properties of irreversible deformation.

The hardening of metals is interpreted to be caused by the accumulated plastic strain.
For a certain accumulated plastic strain, the expansion of the yield surface, i.e. the so-called
isotropic hardening during a cyclic loading is far more weakened than that during a
monotonic loading and it saturates for a rather small accumulated plastic strain. In order
to describe a cyclic loading behavior of metals, Chaboche et al. (1979) proposed the concept
of (isotropically) nonhardening domain which means that the isotropic hardening does not
occur when a plastic strain lies inside a certain surface in a plastic strain space. Let this
surface be called a “hardening surface™. It is similar to the conventional yield surface in a
stress space, for which it is assumed that a plastic deformation occurs only when a stress
lies on the surface. Based on this idea, they described the hardening surface by the equation

V2311 -K=0 (107)
where
& =g —d. (108)

Lct the rate of translation and expansion of the hardening surface be given as

@ = (1 —b)RC tr (Re”)n (109)
K = /236K tr (0é?) (110)

where b and { are material constants and

0= /)| (n
R=/23|&1/K. (112)

Equations (109) and (110) satisfy eqn (107) when R = 1. Equations (107)—(111) for R* =T
were proposed by Chaboche er al. (1979) as b = 1/2 and modified by Ohno (1982) as
b # 1/2, where I is defined as

F=1 when /23|#|-K=0 and tr(@e") >0
F=0 when /23|#|—K<0 or tr(ii€")<O0.

However, this hardening criterion falls within the framework of conventional plasticity,
postulating that the interior of the hardening surface is a purely nonhardening domain.
Thus, it would not be applicable to the cyclic loading behavior for plastic strain amplitudes
which change within the hardening surface. Further, a discontinuous stress rate-strain rate
relation is described with an abrupt occurrence of hardening when a plastic strain reaches
this surface. In order to extend the concept of nonhardening domain to the unconventional
plasticity framework, the new variable R is here incorporated into eqn (104) so that a
hardening occurs depending on the value of R even when a plastic strain lies inside the
hardening surface, and thus the continuous hardening rate is described always. Besides, the
Judgement whether the current plastic strain lies on the hardening surface or not is not
required. By this extension or its refinement, a cyclic loading behavior of metals will be
predicted properly for various stress or strain amplitudes.
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S. R and & are given by eqns (48). (52) with eqn (58) and (61)—(63) themselves.
The subloading surface for the normal-yield surface (101) is expressed in the form of
eqn (32) as

3216 + RS = RF (113)
where
¢ =6-iuél. §=8-1uSL (114)

Solving eqn (113) for R, one obtains the analytical solution

R=1{J+ /(I +Q|é'|"}/Q (115)
where
J=u@S). Q=iF -8 (116)

Equation ([ 15) is the expression of R by the current stress ¢ and internal variables F, ¢ and
S. Further, substituting eqn (115) into eqn (33). one has the expression for & by them.
Let an elastic constitutive equation be given by Hooke's law:

Ly

where £ and G are Young's modulus and a shear modulus, respectively.

Figure 7 shows a relationship between ﬁt and y"/\/3 in a simple torsional cyclic
loading measured by Tanaka et al. (1985), where t and y” are the shear stress and twice the
plastic shear stratn, respectively (the equivalent stress \/3/2 lle’ll and the equivaient plastic
strain rate \/2/3 [[e7]] reduce to \/3|rl and I)?”[/\/3 for a simple torsion and to |o| and |£7|
for a uniaxial loading, respectively, where ¢” and €7 are a deviatoric stress and a deviatoric
plastic strain rate). The thin-walled tubular specimen (2155° mm diameter, 1%)°? mm
thickness and 60 mm length) of type 316 stainless steel was subjected to cyclic loadings
of plastic strain amplitudes ofy"/\/3 = +0.1, £0.2 and +0.4%. The cyclic loading in cach
stage—in each specified value of amplitude —was continued until the stabilized behavior
was almost attained ; the corresponding equivalent plastic strain jldy”l/\/} was more than
30%.

The theoretical curves calculated by the present model are depicted in Fig. 8(a) where
material constants and initial values are selected as follows:

hy=15, hy=125 Kk, =15000MPa, k,=200
C=700, x=09, u, =6000, m=0.1

v=13, (=35 bh=0.1

E =199,000 MPa, G = 77.000 MPa
Fy=250MPa, K, =0, dy=8S,=d,=0

where K,, d, S, and d, are initial values of K, d, S and 4, respectively. Variations of
34, S3G,+ Fi?/3]) (normal-yield state) and /35, are depicted in Fig. 8(b), where &,
and S, are shear components of & and S. The smooth elastic-plastic transition, Masing
effect and the saturation of hardening are shown in Fig. 8.

A good agreement between experiment and theory is observed in Figs 7 and 8(a).

8. DISCUSSIONS

The multi surface model proposed by Mroz (1966, 1967) and Iwan (1967) as an
extension of the kinematic hardening model to the subyield state and the two surface model
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Fig. 7. Measured relationship of \/ 3t versus y"/ﬁ for simple torsional cyclic loadings of various
plastic strain amplitudes (Tanaka et al., 1985).

proposed by Dafalias and Popov (1975) and Krieg (1975) as a simplification of the multi
surface model are well known and have been widely used as well as the initial subloading
surface model or the bounding surface model with a radial mapping.

The unconventional models as the extention of the kinematic hardening model to the
subyield state, i.e. the multi and the two surface models premise on the contact of loading
surfaces, which is avoided exactly in the present models by the assumption [I1']. It leads to
the singularity of the field of hardening moduli in the contact point which is a similarity-
center of the surfaces. Thus, a discontinuous stress rate-strain rate relation is described
when a stress passes through the contact point after it left once from this point (in a
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reloading after a partial unloading). Accordingly. these models are incapable of describing
a smooth stress—strain curve in general. Further, the two surface model assumes the subyield
surface enclosing an elastic domain. Then, even if there does not exist a contact of surfaces,
a discontinuity of stress rate—strain rate relation occurs when a stress reaches the subyield
surface.

Further, consider the uniaxial loading behavior of the material with the nonhardening
von Mises normal-yield surface. The multi surface model predicts asymmetric unloading-
reloading curves where the ending point of hysteresis loop coincides with its beginning point
since the movements of nesting surfaces in the refoading state are just the inverse of those
in the unloading state. Then, an unrealistically large hysteresis loop is predicted with the
rounding coefficient L = 2 (Masing rule) and a mechanical ratchetting effect cannot be
described tracing a fixed hysteresis loop cyclically. On the other hand. in the two surface
model a plastic modulus is prescribed by the distance from a current stress point on the
subyield surface to a conjugate stress on the normal-yield surface. Then, all the stress-strain
curves are of same shape except for elastic parts. Accordingly. the Masing effect cannot be
described by the two surface model, i.e. L = 1.

The mutlti surface model was mathematically refined to the infinite surfuce model by
Mréz et al. (1981) assuming an infinite number of surfaces. It also involves, however, the
above-mentioned shortcomings. Recently. in order to avoid them, Klisinski (1988) and
Klisinski and Mroz (1988) proposed a method to remove a contact of the active loading
and the stress reversal surfaces by combining a restrained transkition of the former to the
center of the latter and its expansion referring to the concept of the subloading surface
model. However, this modification leads to a more peculiar problem that the two special
lines arc generated in the domain enclosed by the stress reversal surface, along which a
stress rate induces a purely elastic deformation.

The two surface model was further simpliticd to the single surface model by Dafalias
and Popov (1977) making the inner yield surfuce shrink to a point so that an clastic domain
vanishes, and it was applicd to metal by Dafalias (1977) and to concrete by Fardis ef al.
(1983). This model has the advantage to describe the mutual dependency between the
directions of a stress rate and a plastic strain rate, while it s obviously incapable of
describing the plastic deformation due to the stress change along the normal-yield surfuce.
However, it is not applicable to the cyclic loading behavior predicting an excessive
ratchetting with an open hysteresis loop as well as the tnitial subloading surface model.
Also, it is incapable of describing a softening behavior at least by the existing formulation
as was indicated by Hashiguchi (19851, 1988). Furthermore, this model is accompanied
with the mathematical inconvenience requiring analyses of nonlinear simultaneous equa-
tions in stress rate-strain rate analysis in general.

The subloading surface model does not assume a purely elastic domain. Also, when
the normal-yield and the subloading surfaces come into contact, their sizes coincide with
cach other, i.e. R = |, while the plastic modulus monotonically depends on NSR. Thus, a
continuous stress rate-strain rate relation is described in a loading state, bringing about a
smooth elastic-plastic transition. Further, the extended subloading surface model for-
mulated in this paper is capable of describing fundamental plastic deformation behavior,
i.¢. an anisotropic hardening/softening and a hysteresis behavior including the Masing
effect, a closed hysteresis loop and a mechanical ratchetting effect consistently by taking
account of the movement of the similarity-center, i.c. the most elastic stress, Thus, it is to
be applicable to the prediction of cyclic loading behavior in the subyiceld state, which has
been required as the unconventional elastoplasticity.

The radial mapping model does not utilize the subloading surface and thus it uses the
ratio of the magnitude of the current stress to that of the conjugate stress instead of NSR
for the formulation of plastic strain rate equation by an interpolation method. These ratios
arc, however, mathematically the same when the subloading surface is similar to the normal-
yield surface as is postulated in the initial or the present subloading surface model.
Besides, the evolution equation of the projection-center is not formulated in a useful form
and thus it is actually fixed. Dafalias (1986) and Klisinski (1988) assumed a priori the
evolution equation of the similarity (projection or homology)-center which is the special
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form (isotropically and kinematically nonhardening normal-yield surface) of the equation
proposed by the author (Hashiguchi, 1985b) and is inapplicable to deformation analysis of
real materials with a hardening/softening. Thus, the concrete formulation of the radial
mapping is regarded to lie in the stage of that of the initial subloading surface model.
Besides. as was described in Section 4, the incorporation of the subloading surface is
inevitable in order to formulate the extended consistency condition from which a plastic
strain rate equation is derived reasonably, taking account of the physical requirement that
NSR increases with a plastic deformation without the use of ad hoc method such as an
interpolation. Further. the incorporation of the subloading surface would be unavoidable
for further extension to a more generalized model which does not assume the similarity and
to the tangential plasticity (Hashiguchi, 1989).

The subloading surface model as well as the other elastoplastic constitutive models
without an adoption of such an ad hoc method as the intersection or the corner of plastic
potential surfaces is incapable of describing the mutual dependency between the directions
of a stress rate and a plastic strain rate and also the plastic deformation due to the stress
change along the loading surface. however. Hereinafter, we should extend models so as to
describe these behaviors also. Dafalias (1986) advocated the *‘hypoplasticity™ referring to
the hypoelasticity of Truesdell (1955). His definition of hypoplasticity or the naming of this
term is not clear but he states that the hypoplastic constitutive equation includes a stress
rate direction tensor, i.c. ¢/||d| so that it becomes an incrementally nonlinear equation,
while the hypoclasticity does not premise on the existence of a potential surface but excludes
the nonlincarity. Thus, it requires the analysis of nonlinear simultancous equations of stress
rate strain rate. Obviously, it feads to a serious disadvantage to the analysis of boundary
value problems. However, there does not exist the inevitable reason that one has to introduce
the stress rate dircction tensor directly in order to describe the mutual dependency between
the directions of a stress rate and a plastic strain rate as is casily seen by the fact that even
Hooke's law, the simplest linear equation, can describe a strain rate for any stress rate, and
rice versa, their directions aftecting cach other, The further extension of the subloading
surface model within the framework of the ordinary bilinear equation so as to describe the
above-mentioned mutual dependency and the plastic deformation by the stress change
along the loading surface will be exposed in a subsequent paper.
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